IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v213y2020ics036054422031865x.html
   My bibliography  Save this article

Energy-saving research and development activities and energy intensity in China: A regional comparison perspective

Author

Listed:
  • Huang, Junbing
  • Lai, Yali
  • Wang, Yajun
  • Hao, Yu

Abstract

Understanding the drivers of energy intensity reduction is of great significance for governments to design targeted energy policies. In this study, the effect of energy-saving research and development activities on energy intensity is carefully investigated by categorising these activities into three types with two purposes. Based on a Chinese provincial dataset for 2000–2016 and the dynamic panel model, the empirical results from the whole sample suggest that energy-saving research and development activities play a significant role in energy intensity reduction. However, research and development activities with different purposes and performers show statistically different effects on energy intensity. The activities conducted by enterprises and with the purpose of pursuing utility, have a greater reduction effect compared to other kinds of activities, suggesting that the utility-type of energy-saving research and development activities of enterprises contribute more to energy intensity reduction. In addition, from an inter-regional perspective, energy-saving research and development activities have differentiated effects in China’s Eastern, Central, and Western regions. The empirical results provide insightful energy policies for reducing energy intensity through energy-saving research and development activities, for China’s central and local governments.

Suggested Citation

  • Huang, Junbing & Lai, Yali & Wang, Yajun & Hao, Yu, 2020. "Energy-saving research and development activities and energy intensity in China: A regional comparison perspective," Energy, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:energy:v:213:y:2020:i:c:s036054422031865x
    DOI: 10.1016/j.energy.2020.118758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422031865X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
    2. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    3. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    4. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    5. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    6. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    7. Huijie Yan, 2015. "Provincial energy intensity in China: The role of urbanization," Post-Print hal-01457329, HAL.
    8. Bu, Maoliang & Li, Shuang & Jiang, Lei, 2019. "Foreign direct investment and energy intensity in China: Firm-level evidence," Energy Economics, Elsevier, vol. 80(C), pages 366-376.
    9. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    10. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    11. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    12. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    13. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
    14. Richard F. Garbaccio & Mun S. Ho & Dale W. Jorgenson, 1999. "Why Has the Energy-Output Ratio Fallen in China?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-91.
    15. Hãœbler, Michael & Keller, Andreas, 2010. "Energy savings via FDI? Empirical evidence from developing countries," Environment and Development Economics, Cambridge University Press, vol. 15(1), pages 59-80, February.
    16. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    17. Price, Lynn & Levine, Mark D. & Zhou, Nan & Fridley, David & Aden, Nathaniel & Lu, Hongyou & McNeil, Michael & Zheng, Nina & Qin, Yining & Yowargana, Ping, 2011. "Assessment of China's energy-saving and emission-reduction accomplishments and opportunities during the 11th Five Year Plan," Energy Policy, Elsevier, vol. 39(4), pages 2165-2178, April.
    18. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    19. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    20. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    21. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    22. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    23. Huang, Junbing & Chen, Xiang, 2020. "Domestic R&D activities, technology absorption ability, and energy intensity in China," Energy Policy, Elsevier, vol. 138(C).
    24. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    25. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    26. Garrone, Paola & Grilli, Luca, 2010. "Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation," Energy Policy, Elsevier, vol. 38(10), pages 5600-5613, October.
    27. Yang, Shenglang & Shi, Xunpeng, 2018. "Intangible capital and sectoral energy intensity: Evidence from 40 economies between 1995 and 2007," Energy Policy, Elsevier, vol. 122(C), pages 118-128.
    28. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    29. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    30. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Huwei & Li, Nuoyan & Lee, Chien-Chiang, 2021. "Energy intensity of manufacturing enterprises under competitive pressure from the informal sector: Evidence from developing and emerging countries," Energy Economics, Elsevier, vol. 104(C).
    2. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    3. Zhang, Xinbiao & Xie, Yudong & Han, Jiazhen & Wang, Yong, 2022. "Design of control valve with low energy consumption based on Isight platform," Energy, Elsevier, vol. 239(PD).
    4. Lijun Zeng & Wencheng Zhang & Muyi Yang, 2023. "A Bi-Level Optimization Model for Inter-Provincial Energy Consumption Transfer Tax in China," Energies, MDPI, vol. 16(21), pages 1-20, October.
    5. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    6. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    7. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    8. Rafael Alvarado & Cristian Ortiz & Lizeth Cuesta & Brayan Tillaguango, 2023. "Spillovers impact of institutional and economic factors in energy intensity," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1805-1823, June.
    9. Chen, Yu & Lin, Boqiang, 2021. "How does infrastructure affect energy services?," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    2. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    3. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    4. Huang, Junbing & Chen, Xiang, 2020. "Domestic R&D activities, technology absorption ability, and energy intensity in China," Energy Policy, Elsevier, vol. 138(C).
    5. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    6. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    7. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    8. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    9. Huang, Junbing & Luan, Bingjiang & He, Wanrui & Chen, Xiang & Li, Mengfan, 2022. "Energy technology of conservation versus substitution and energy intensity in China," Energy, Elsevier, vol. 244(PA).
    10. Huang, Junbing & Lian, Shijia & Qu, Ran & Luan, Bingjiang & Wang, Yajun, 2023. "Investigating the role of enterprises' property rights in China's provincial industrial energy intensity," Energy, Elsevier, vol. 282(C).
    11. Hu, Changshuai & Du, Dan & Huang, Junbing, 2023. "The driving effect of energy demand evolution: From the perspective of heterogeneity in technology," Energy, Elsevier, vol. 275(C).
    12. Shuxing Chen & Xiangyang Du & Junbing Huang & Cheng Huang, 2019. "The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    13. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    14. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    15. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    16. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    17. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    18. Adom, Philip Kofi & Amuakwa-Mensah, Franklin, 2016. "What drives the energy saving role of FDI and industrialization in East Africa?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 925-942.
    19. Amuakwa-Mensah, Franklin & Klege, Rebecca A. & Adom, Philip K. & Amoah, Anthony & Hagan, Edmond, 2018. "Unveiling the energy saving role of banking performance in Sub-Sahara Africa," Energy Economics, Elsevier, vol. 74(C), pages 828-842.
    20. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s036054422031865x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.