IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp865-875.html
   My bibliography  Save this article

Estimates of energy demand and energy saving potential in China's agricultural sector

Author

Listed:
  • Fei, Rilong
  • Lin, Boqiang

Abstract

This paper analyzed the energy saving potentials of China's agricultural sector by using an econometric approach and a scenario analysis. First a co-integration analysis and an error correction model are employed to analyze the long-term equilibrium relationship between agricultural energy consumption and its influencing factors such as agricultural output, mechanical power, agricultural industrial structure, fiscal expenditure and energy prices during the period 1980–2012. Then stability test, fitting effect test and Monte Carlo simulation method are applied to confirm the rationality of the prediction model. Further, the scenario analysis method is used to predict the energy-saving potentials in 2020 and 2025 under different scenarios. It is found that agricultural output and mechanical power have positive impacts on energy consumption, while agricultural industrial structure, fiscal expenditure and energy prices have negative influences. The results demonstrate that under BAU condition, the energy demand of China's agricultural sector will reach 128, 94 and 161,61million tons of standard coal by 2020 and 2025 respectively. Moreover, the energy savings potential will be 7, 967 million tons and 15,701 million tons under moderate and advanced scenarios by the year 2020, and 17, 225 million tons and 31,094 million tons by the year 2025. This study provides a reference for establishing energy saving policies for China's agricultural sector.

Suggested Citation

  • Fei, Rilong & Lin, Boqiang, 2017. "Estimates of energy demand and energy saving potential in China's agricultural sector," Energy, Elsevier, vol. 135(C), pages 865-875.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:865-875
    DOI: 10.1016/j.energy.2017.06.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Boqiang & Zhang, Guoliang, 2013. "Estimates of electricity saving potential in Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 60(C), pages 558-568.
    2. Amarawickrama, Himanshu A. & Hunt, Lester C., 2008. "Electricity demand for Sri Lanka: A time series analysis," Energy, Elsevier, vol. 33(5), pages 724-739.
    3. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    4. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2010. "The relationship among energy prices and energy consumption in China," Energy Policy, Elsevier, vol. 38(1), pages 197-207, January.
    5. Wolde-Rufael, Yemane, 2010. "Bounds test approach to cointegration and causality between nuclear energy consumption and economic growth in India," Energy Policy, Elsevier, vol. 38(1), pages 52-58, January.
    6. Rozakis, S. & Sourie, J. -C., 2005. "Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty," Energy Policy, Elsevier, vol. 33(2), pages 171-182, January.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 41(C), pages 374-392.
    9. Lardic, Sandrine & Mignon, Valérie, 2008. "Oil prices and economic activity: An asymmetric cointegration approach," Energy Economics, Elsevier, vol. 30(3), pages 847-855, May.
    10. Galindo, Luis Miguel, 2005. "Short- and long-run demand for energy in Mexico: a cointegration approach," Energy Policy, Elsevier, vol. 33(9), pages 1179-1185, June.
    11. Cleveland, Cutler J., 1995. "Resource degradation, technical change, and the productivity of energy use in U.S. agriculture," Ecological Economics, Elsevier, vol. 13(3), pages 185-201, June.
    12. Ram, Rati, 1986. "Government Size and Economic Growth: A New Framework and Some Evidencefrom Cross-Section and Time-Series Data," American Economic Review, American Economic Association, vol. 76(1), pages 191-203, March.
    13. Karkacier, Osman & Gokalp Goktolga, Z. & Cicek, Adnan, 2006. "A regression analysis of the effect of energy use in agriculture," Energy Policy, Elsevier, vol. 34(18), pages 3796-3800, December.
    14. Kulshreshtha, Mudit & Parikh, Jyoti K., 2000. "Modeling demand for coal in India: vector autoregressive models with cointegrated variables," Energy, Elsevier, vol. 25(2), pages 149-168.
    15. Spinney, Peter J & Watkins, G Campbell, 1996. "Monte Carlo simulation techniques and electric utility resource decisions," Energy Policy, Elsevier, vol. 24(2), pages 155-163, February.
    16. Lin, Boqiang & Liu, Jianghua, 2011. "Principles, effects and problems of differential power pricing policy for energy intensive industries in China," Energy, Elsevier, vol. 36(1), pages 111-118.
    17. In Choi & Bhum Suk Chung, 1995. "Sampling frequency and the power of tests for a unit root: A simulation study," Economics Letters, Elsevier, vol. 49(2), pages 131-136, August.
    18. Lin, Boqiang & Xie, Chunping, 2013. "Estimation on oil demand and oil saving potential of China's road transport sector," Energy Policy, Elsevier, vol. 61(C), pages 472-482.
    19. Park, Sung Y. & Zhao, Guochang, 2010. "An estimation of U.S. gasoline demand: A smooth time-varying cointegration approach," Energy Economics, Elsevier, vol. 32(1), pages 110-120, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    2. Salim Almaliki & Nasim Monjezi, 2021. "Using new computer based techniques to optimise energy consumption in agricultural land levelling," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(4), pages 149-163.
    3. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    4. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    5. Lyu, Yanfeng & Yang, Xiangdong & Ma, Xiaohan & Pan, Hengyu & Zhang, Xiaohong, 2023. "Promoting coordinated development of the fertilizer production-crop plantation combined system through an integrated approach," Ecological Modelling, Elsevier, vol. 478(C).
    6. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    7. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    8. Ali, Akhter & Rahut, Dil Bahadur & Imtiaz, Muhammad, 2019. "Effects of Pakistan's energy crisis on farm households," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    9. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    10. Yongxi Ma & Lu Zhang & Shixiong Song & Shuao Yu, 2022. "Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    11. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    12. Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.
    13. Wang, Hongzhang & Ren, Hao & Han, Kun & Li, Geng & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "Improving the net energy and energy utilization efficiency of maize production systems in the North China Plain," Energy, Elsevier, vol. 274(C).
    14. Wang, Zhaoxia & Zhu, Han & Ding, Yan & Zhu, Tianli & Zhu, Neng & Tian, Zhe, 2018. "Energy efficiency evaluation of key energy consumption sectors in China based on a macro-evaluating system," Energy, Elsevier, vol. 153(C), pages 65-79.
    15. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    16. Raza, Muhammad Yousaf & Wu, Rongxin & Lin, Boqiang, 2023. "A decoupling process of Pakistan's agriculture sector: Insights from energy and economic perspectives," Energy, Elsevier, vol. 263(PC).
    17. Martinho, V.J.P.D., 2020. "Relationships between agricultural energy and farming indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Xie, Chunping, 2013. "Estimation on oil demand and oil saving potential of China's road transport sector," Energy Policy, Elsevier, vol. 61(C), pages 472-482.
    2. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
    3. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
    4. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
    5. Giuliodori, David & Rodriguez, Alejandro, 2015. "Analysis of the stainless steel market in the EU, China and US using co-integration and VECM," Resources Policy, Elsevier, vol. 44(C), pages 12-24.
    6. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    7. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.
    8. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
    9. Boqiang Lin & Zihan Zhang & Fei Ge, 2017. "Energy Conservation in China’s Cement Industry," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    10. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    11. Lin, Boqiang & Chen, Yu & Zhang, Guoliang, 2018. "Impact of technological progress on China's textile industry and future energy saving potential forecast," Energy, Elsevier, vol. 161(C), pages 859-869.
    12. Türkekul, Berna & UnakItan, Gökhan, 2011. "A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture," Energy Policy, Elsevier, vol. 39(5), pages 2416-2423, May.
    13. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    14. Zou, Gao Lu, 2012. "The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy," Energy Policy, Elsevier, vol. 47(C), pages 456-467.
    15. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    16. Lin, Boqiang & Wu, Ya & Zhang, Li, 2012. "Electricity saving potential of the power generation industry in China," Energy, Elsevier, vol. 40(1), pages 307-316.
    17. Kakali Kanjilal & Sajal Ghosh, 2018. "Revisiting income and price elasticity of gasoline demand in India: new evidence from cointegration tests," Empirical Economics, Springer, vol. 55(4), pages 1869-1888, December.
    18. Halim Tatli, 2019. "Factors affecting industrial coal demand in Turkey," Energy & Environment, , vol. 30(6), pages 1027-1048, September.
    19. Naser, Hanan, 2015. "Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies," Energy, Elsevier, vol. 89(C), pages 421-434.
    20. Adewuyi, Adeolu O., 2016. "Determinants of import demand for non-renewable energy (petroleum) products: Empirical evidence from Nigeria," Energy Policy, Elsevier, vol. 95(C), pages 73-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:865-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.