IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2786-d553379.html
   My bibliography  Save this article

Evaluating the Influence of Cetane Improver Additives on the Outcomes of a Diesel Engine Characteristics Fueled with Peppermint Oil Diesel Blend

Author

Listed:
  • Purushothaman Paneerselvam

    (Department of Mechanical Engineering, Agni College of Technology, Chennai 600130, India)

  • Gnanamoorthi Venkadesan

    (Department of Mechanical Engineering, University College of Engineering Villupura, Villupura 605103, India)

  • Mebin Samuel Panithasan

    (Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India)

  • Gurusamy Alaganathan

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Sławomir Wierzbicki

    (Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 11, 10-719 Olsztyn, Poland)

  • Maciej Mikulski

    (School of Technology and Innovation, University of Vaasa, Wolffintie, 34, FI-65200 Vaasa, Finland)

Abstract

This paper aims to evaluate the impact of cetane improvers on the combustion, performance and emission characteristics of a compression ignition engine fueled with a 20% peppermint bio-oil/diesel blend (P20). It is hypothesized that the low viscosity and boiling point of peppermint oil could improve the atomization characteristics of the fuel. However, the usage of peppermint oil is restricted due to its low cetane index. To improve this, Diethyl Ether (DEE) and Di- tertiary Butyl Peroxide (DTBP) are added to the P20 blend. The tests are performed in a single-cylinder naturally aspirated water-cooled diesel engine and results indicate that NOx emission for P20 + DEE and P20 + DTBP is decreased by 10.4% and 9.8%, respectively, when compared to P20 at full load condition. Among these two cetane improvers, DTBP is more effective in reducing the CO, HC and smoke emission and the performance of the engine was reported to be higher for P20 + DTBP blends.

Suggested Citation

  • Purushothaman Paneerselvam & Gnanamoorthi Venkadesan & Mebin Samuel Panithasan & Gurusamy Alaganathan & Sławomir Wierzbicki & Maciej Mikulski, 2021. "Evaluating the Influence of Cetane Improver Additives on the Outcomes of a Diesel Engine Characteristics Fueled with Peppermint Oil Diesel Blend," Energies, MDPI, vol. 14(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2786-:d:553379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Aguado-Deblas & Rafael Estevez & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna, 2020. "Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
    3. Purushothaman, K. & Nagarajan, G., 2009. "Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil," Renewable Energy, Elsevier, vol. 34(1), pages 242-245.
    4. Kamil DUDA & Sławomir WIERZBICKI & Maciej MIKULSKI & Łukasz KONIECZNY & Bogusław ŁAZARZ & Magdalena LETUŃ-ŁĄTKA, 2021. "Emissions From A Medium-Duty Crdi Engine Fuelled With Diesel–Biodiesel Blends," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 39-49, March.
    5. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Papagiannakis, Roussos G., 2019. "Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine," Energy, Elsevier, vol. 174(C), pages 1145-1157.
    6. Ruslans Smigins & Arturs Zakis, 2020. "Impact of Diethyl Ether/Rapeseed Oil Blends on Performance and Emissions of a Light-Duty Diesel Vehicle," Energies, MDPI, vol. 13(15), pages 1-11, July.
    7. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    8. Abomohra, Abd El-Fatah & El-Sheekh, Mostafa & Hanelt, Dieter, 2017. "Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock," Renewable Energy, Elsevier, vol. 101(C), pages 1266-1272.
    9. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    10. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Cabrera & João M. Melo de Sousa, 2022. "Use of Sustainable Fuels in Aviation—A Review," Energies, MDPI, vol. 15(7), pages 1-23, March.
    2. Sławomir Wierzbicki & Kamil Duda & Maciej Mikulski, 2021. "Renewable Fuels for Internal Combustion Engines," Energies, MDPI, vol. 14(22), pages 1-3, November.
    3. Joseph Antony Sundarsingh Tensingh & Vijayalakshmi Shankar, 2022. "Sustainable Production of Biodiesel Using UV Mutagenesis as a Strategy to Enhance the Lipid Productivity in R. mucilaginosa," Sustainability, MDPI, vol. 14(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    2. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2021. "Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    3. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Alfredas Rimkus & Rafał Longwic, 2022. "Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions," Energies, MDPI, vol. 15(11), pages 1-18, June.
    4. Diego Luna & Rafael Estevez, 2022. "Optimization of Biodiesel and Biofuel Process," Energies, MDPI, vol. 15(16), pages 1-4, August.
    5. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
    6. Sheriff, S. Abdul & Kumar, Indrala Kishan & Mandhatha, Petluri Sai & Jambal, Samraj Sunder & Sellappan, Raja & Ashok, B. & Nanthagopal, K., 2020. "Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement," Renewable Energy, Elsevier, vol. 147(P1), pages 2295-2308.
    7. Kumar, AR. Mahesh & Kannan, M. & Nataraj, G., 2020. "A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel," Renewable Energy, Elsevier, vol. 146(C), pages 1781-1795.
    8. Nabi, M.N. & Rasul, M.G. & Rahman, S.M.A. & Dowell, Ashley & Ristovski, Z.D. & Brown, R.J., 2019. "Study of performance, combustion and emission characteristics of a common rail diesel engine with tea tree oil-diglyme blends," Energy, Elsevier, vol. 180(C), pages 216-228.
    9. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Dimitrios Tziourtzioumis, 2023. "Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends," Energies, MDPI, vol. 16(2), pages 1-17, January.
    10. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2020. "Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine," Energies, MDPI, vol. 13(24), pages 1-15, December.
    11. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    12. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    13. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    15. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    16. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    17. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    18. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    19. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    20. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2786-:d:553379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.