IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp953-964.html
   My bibliography  Save this article

Socio-economic and environmental implications of solar electrification: Experience of rural Odisha

Author

Listed:
  • Mishra, Pulak
  • Behera, Bhagirath

Abstract

Access to environmentally clean and renewable energy is critically linked with sustainable and inclusive development leading to improvement in overall standard of living of people in rural areas. Availability of such energy in remote areas can foster economic activities and create various avenues for livelihood, whereas lack of sufficient and secure energy may constrain economic growth and development. Given that solar electrification has been gaining increasing importance as a source of environmentally clean and economically efficient energy for people living in rural areas, the present paper is an attempt to understand its socio-economic and environmental implications. Analyzing experiences from two villages of the Indian state of Odisha, the paper finds that households’ adaptation to solar energy depends on a set of socio-economic, demographic and institutional factors including governments’ approach towards rural electrification. It is also found that solar home system has facilitated socio-economic activities and improved standard of living of households, especially of women living in the area. The beneficiary households also perceive that solar electrification has improved environmental standard by reducing household pollution resulting from use of traditional sources of energy such as kerosene, though confirmation in this regard requires further investigation. However, households’ adaptation to solar energy and realization of its potential benefits seems to be constrained by non-availability of maintenance and repairing facilities and access to conventional grid electricity under various programmes of the government. In addition to scaling up solar technology, an institutional framework with quality leadership and active participation of NGOs and other community level organization is necessary to link markets and policies effectively and enhance households’ inclination towards greater use of this energy.

Suggested Citation

  • Mishra, Pulak & Behera, Bhagirath, 2016. "Socio-economic and environmental implications of solar electrification: Experience of rural Odisha," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 953-964.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:953-964
    DOI: 10.1016/j.rser.2015.11.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115013428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, Rangan, 2006. "Comparison of options for distributed generation in India," Energy Policy, Elsevier, vol. 34(1), pages 101-111, January.
    2. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2006. "Photovoltaic projects for decentralized power supply in India: A financial evaluation," Energy Policy, Elsevier, vol. 34(18), pages 3727-3738, December.
    3. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    4. Chakrabarty, Sayan & Islam, Tawhidul, 2011. "Financial viability and eco-efficiency of the solar home systems (SHS) in Bangladesh," Energy, Elsevier, vol. 36(8), pages 4821-4827.
    5. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    6. Behera, Bhagirath & Rahut, Dil Bahadur & Jeetendra, Aryal & Ali, Akhter, 2015. "Household collection and use of biomass energy sources in South Asia," Energy, Elsevier, vol. 85(C), pages 468-480.
    7. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim, 2011. "Are micro-benefits negligible? The implications of the rapid expansion of Solar Home Systems (SHS) in rural Bangladesh for sustainable development," Energy Policy, Elsevier, vol. 39(7), pages 4022-4031, July.
    8. Leach, Gerald, 1975. "Energy and food production," Food Policy, Elsevier, vol. 1(1), pages 62-73, November.
    9. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Household energy choice and consumption intensity: Empirical evidence from Bhutan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 993-1009.
    10. Fuchs, Doris A. & Arentsen, Maarten J., 2002. "Green electricity in the market place: the policy challenge," Energy Policy, Elsevier, vol. 30(6), pages 525-538, May.
    11. Gosens, Jorrit & Lu, Yonglong & He, Guizhen & Bluemling, Bettina & Beckers, Theo A.M., 2013. "Sustainability effects of household-scale biogas in rural China," Energy Policy, Elsevier, vol. 54(C), pages 273-287.
    12. Radulovic, Verena, 2005. "Are new institutional economics enough? Promoting photovoltaics in India's agricultural sector," Energy Policy, Elsevier, vol. 33(14), pages 1883-1899, September.
    13. Bhandari, Amit K. & Jana, Chinmoy, 2010. "A comparative evaluation of household preferences for solar photovoltaic standalone and mini-grid system: An empirical study in a costal village of Indian Sundarban," Renewable Energy, Elsevier, vol. 35(12), pages 2835-2838.
    14. Rahut, Dil Bahadur & Das, Sukanya & De Groote, Hugo & Behera, Bhagirath, 2014. "Determinants of household energy use in Bhutan," Energy, Elsevier, vol. 69(C), pages 661-672.
    15. Kirubi, Charles & Jacobson, Arne & Kammen, Daniel M. & Mills, Andrew, 2009. "Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya," World Development, Elsevier, vol. 37(7), pages 1208-1221, July.
    16. Kruzner, Kelly & Cox, Kristin & Machmer, Brian & Klotz, Leidy, 2013. "Trends in observable passive solar design strategies for existing homes in the U.S," Energy Policy, Elsevier, vol. 55(C), pages 82-94.
    17. Wiser, Ryan H., 1998. "Green power marketing: increasing customer demand for renewable energy," Utilities Policy, Elsevier, vol. 7(2), pages 107-119, June.
    18. Morthorst, P. E., 2000. "The development of a green certificate market," Energy Policy, Elsevier, vol. 28(15), pages 1085-1094, December.
    19. Lynne, Gary D. & Franklin Casey, C. & Hodges, Alan & Rahmani, Mohammed, 1995. "Conservation technology adoption decisions and the theory of planned behavior," Journal of Economic Psychology, Elsevier, vol. 16(4), pages 581-598, December.
    20. Arentsen, Maarten J & Kunneke, Rolf W, 1996. "Economic organization and liberalization of the electricity industry : In search of conceptualization," Energy Policy, Elsevier, vol. 24(6), pages 541-552, June.
    21. Chaurey, A. & Kandpal, T.C., 2010. "A techno-economic comparison of rural electrification based on solar home systems and PV microgrids," Energy Policy, Elsevier, vol. 38(6), pages 3118-3129, June.
    22. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.
    23. Alzola, J.A. & Vechiu, I. & Camblong, H. & Santos, M. & Sall, M. & Sow, G., 2009. "Microgrids project, Part 2: Design of an electrification kit with high content of renewable energy sources in Senegal," Renewable Energy, Elsevier, vol. 34(10), pages 2151-2159.
    24. Minton, Ann P. & Rose, Randall L., 1997. "The Effects of Environmental Concern on Environmentally Friendly Consumer Behavior: An Exploratory Study," Journal of Business Research, Elsevier, vol. 40(1), pages 37-48, September.
    25. M. Voogt & M.G. Boots & G.J. Schaeffer & J.W. Martens, 2000. "Renewable Electricity in a Liberalised Market – The Concept of Green Certificates," Energy & Environment, , vol. 11(1), pages 65-79, January.
    26. Schnieders, Jurgen & Hermelink, Andreas, 2006. "CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building," Energy Policy, Elsevier, vol. 34(2), pages 151-171, January.
    27. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    28. Gustavsson, Mathias & Ellegård, Anders, 2004. "The impact of solar home systems on rural livelihoods. Experiences from the Nyimba Energy Service Company in Zambia," Renewable Energy, Elsevier, vol. 29(7), pages 1059-1072.
    29. Leach, Gerald, 1992. "The energy transition," Energy Policy, Elsevier, vol. 20(2), pages 116-123, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juanpera, M. & Domenech, B. & Ferrer-Martí, L. & Garzón, A. & Pastor, R., 2021. "Renewable-based electrification for remote locations. Does short-term success endure over time? A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Khan, Tahsina & Khanam, Shamsun Nahar & Rahman, Md Habibur & Rahman, Syed Mahbubur, 2019. "Determinants of microfinance facility for installing solar home system (SHS) in rural Bangladesh," Energy Policy, Elsevier, vol. 132(C), pages 299-308.
    3. Choudhury, Shibabrata & Parida, Adikanda & Pant, Rajive Mohan & Chatterjee, Saibal, 2019. "GIS augmented computational intelligence technique for rural cluster electrification through prioritized site selection of micro-hydro power generation system," Renewable Energy, Elsevier, vol. 142(C), pages 487-496.
    4. Syed Ahsan Ali Shah & Gordhan Das Valasai & Asif Ali Memon & Abdul Nasir Laghari & Nabi Bux Jalbani & Jody L. Strait, 2018. "Techno-Economic Analysis of Solar PV Electricity Supply to Rural Areas of Balochistan, Pakistan," Energies, MDPI, vol. 11(7), pages 1-19, July.
    5. Jordi Cravioto & Hideaki Ohgaki & Hang Seng Che & ChiaKwang Tan & Satoru Kobayashi & Hla Toe & Bun Long & Eth Oudaya & Nasrudin Abd Rahim & Hooman Farzeneh, 2020. "The Effects of Rural Electrification on Quality of Life: A Southeast Asian Perspective," Energies, MDPI, vol. 13(10), pages 1-28, May.
    6. Victoria Kihlström & Jörgen Elbe, 2021. "Constructing Markets for Solar Energy—A Review of Literature about Market Barriers and Government Responses," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    7. Diallo, Arouna & Moussa, Richard K., 2020. "The effects of solar home system on welfare in off-grid areas: Evidence from Côte d’Ivoire," Energy, Elsevier, vol. 194(C).
    8. Liu, Yang & Bah, Zainab, 2021. "Enabling development impact of solar mini-grids through the community engagement: Evidence from rural Sierra Leone," Energy Policy, Elsevier, vol. 154(C).
    9. Swain, Swadhina Shikha & Mishra, Pulak, 2021. "How does cleaner energy transition influence standard of living and natural resources conservation? A study of households’ perceptions in rural Odisha, India," Energy, Elsevier, vol. 215(PB).
    10. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 70-88.
    12. Kumar Ganti, Praful & Naik, Hrushikesh & Kanungo Barada, Mohanty, 2022. "Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree appr," Energy, Elsevier, vol. 244(PA).
    13. Terrapon-Pfaff, Julia & Gröne, Marie-Christine & Dienst, Carmen & Ortiz, Willington, 2018. "Productive use of energy – Pathway to development? Reviewing the outcomes and impacts of small-scale energy projects in the global south," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 198-209.
    14. Chhawchharia, Saransch & Sahoo, Sarat Kumar & Balamurugan, M. & Sukchai, Sukruedee & Yanine, Fernando, 2018. "Investigation of wireless power transfer applications with a focus on renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 888-902.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xuesong & Li, Hao & Wang, Xingwu, 2013. "Farmers' willingness to convert traditional houses to solar houses in rural areas: A survey of 465 households in Chongqing, China," Energy Policy, Elsevier, vol. 63(C), pages 882-886.
    2. Pallegedara, Asankha & Mottaleb, Khondoker Abdul & Rahut, Dil Bahadur, 2021. "Exploring choice and expenditure on energy for domestic works by the Sri Lankan households: Implications for policy," Energy, Elsevier, vol. 222(C).
    3. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter & Marenya, Paswel, 2017. "A ladder within a ladder: Understanding the factors influencing a household's domestic use of electricity in four African countries," Energy Economics, Elsevier, vol. 66(C), pages 167-181.
    4. Mottaleb, Khondoker Abdul & Rahut, Dil Bahadur & Ali, Akhter, 2017. "An exploration into the household energy choice and expenditure in Bangladesh," Energy, Elsevier, vol. 135(C), pages 767-776.
    5. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2017. "Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 661-672.
    6. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    7. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    8. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.
    9. Maheshwar Giri & Binoy Goswami, 2018. "Determinants of Household’s Choice of Fuel for Cooking in Developing Countries: Evidence from Nepal," Journal of Development Policy and Practice, , vol. 3(2), pages 137-154, July.
    10. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    11. Xavier Lemaire, 2018. "Solar home systems and solar lanterns in rural areas of the Global South: What impact?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    12. Swain, Swadhina Shikha & Mishra, Pulak, 2021. "How does cleaner energy transition influence standard of living and natural resources conservation? A study of households’ perceptions in rural Odisha, India," Energy, Elsevier, vol. 215(PB).
    13. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Household energy choice and consumption intensity: Empirical evidence from Bhutan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 993-1009.
    14. Abedullah & Muhammad Tanvir, 2020. "Unveiling the Effects of Indoor Air Pollution on Health of Rural Women in Pakistan," PIDE-Working Papers 2020:12, Pakistan Institute of Development Economics.
    15. Arkesteijn, Karlijn & Oerlemans, Leon, 2005. "The early adoption of green power by Dutch households: An empirical exploration of factors influencing the early adoption of green electricity for domestic purposes," Energy Policy, Elsevier, vol. 33(2), pages 183-196, January.
    16. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    17. Chaurey, A. & Kandpal, T.C., 2010. "A techno-economic comparison of rural electrification based on solar home systems and PV microgrids," Energy Policy, Elsevier, vol. 38(6), pages 3118-3129, June.
    18. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    19. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).
    20. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:953-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.