IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3691-d578837.html
   My bibliography  Save this article

Potential Impact of Renewable Energy on the Sustainable Development of Russian Arctic Territories

Author

Listed:
  • Viktoriia Brazovskaia

    (Institute of Industrial Management, Economics and Trade, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Svetlana Gutman

    (Institute of Industrial Management, Economics and Trade, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Andrey Zaytsev

    (Institute of Industrial Management, Economics and Trade, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

Abstract

In recent decades, there has been a positive trend in world politics in the field of promoting territories’ sustainable development. At the same time, one of the most relevant areas is to promote the transition to renewable energy sources (RES), which correspond to one of the UN’s goals—Sustainable Development Goal 7 (SDG 7) “Ensuring universal access to affordable, reliable, sustainable and modern energy sources for all”. This article is devoted to the study of the renewable energy sources’ impact on the sustainable development of the Russian Arctic zone. The authors chose the level of carbon dioxide (CO 2 ) emissions as an indicator reflecting the impact of RES on sustainable development, since this factor is one of the main factors for assessing trends in the activities of countries aimed at achieving progress on most of the Sustainable Development Goals of territories. The hypothesis of the relationship between the use of renewable energy sources and the achievement of progress on the Sustainable Development Goals, one of the indicators of which is the level of CO 2 emissions, was tested and confirmed. An econometric analysis of panel data for 15 countries that are actively implementing the concept of sustainable development, including decarbonizing policies, was carried out, where the resulting indicator for achieving progress on the SDG was the amount of CO 2 emissions. The factors influencing the resulting variable were indicators selected based on a review of existing models, as well as indicators of the Sustainable Development Goals’ achievement. Using an econometric analysis of interdependence, the indicators of progress towards the Sustainable Development Goals that are more likely to have an impact on the level of CO 2 emissions were identified. These are electricity consumption, the share of renewable energy sources in the energy balance, the average per capita income of the population, and carbon intensity. Based on the results obtained, it can be concluded that renewable energy sources are a factor contributing to the achievement of progress on the Sustainable Development Goals. The results obtained are also applicable to the Arctic region, since all countries that have territories in the Arctic zone adhere to the policy of decarbonization and try to reduce the use of fossil fuels.

Suggested Citation

  • Viktoriia Brazovskaia & Svetlana Gutman & Andrey Zaytsev, 2021. "Potential Impact of Renewable Energy on the Sustainable Development of Russian Arctic Territories," Energies, MDPI, vol. 14(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3691-:d:578837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giordano, Nicolò & Raymond, Jasmin, 2019. "Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Sergey Tishkov & Anton Shcherbak & Valentina Karginova-Gubinova & Alexander Volkov & Arsen Tleppayev & Antonina Pakhomova, 2020. "Assessment the role of renewable energy in socio-economic development of rural and Arctic regions," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 3354-3368, June.
    3. Ben Jebli, Mehdi & Farhani, Sahbi & Guesmi, Khaled, 2020. "Renewable energy, CO2 emissions and value added: Empirical evidence from countries with different income levels," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 402-410.
    4. Halkos, George E. & Paizanos, Epameinondas Α., 2013. "The effect of government expenditure on the environment:An empirical investigation," Ecological Economics, Elsevier, vol. 91(C), pages 48-56.
    5. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    6. Giovanni Marin & Massimiliano Mazzanti, 2013. "The evolution of environmental and labor productivity dynamics," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 357-399, April.
    7. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    2. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    3. Yugang He & Wei Wei, 2023. "Renewable Energy Consumption: Does It Matter for China’s Sustainable Development?," Energies, MDPI, vol. 16(3), pages 1-12, January.
    4. Nikolay Tsvetkov & Stanislav Boldyryev & Aleksandr Shilin & Yuriy Krivoshein & Aleksandr Tolstykh, 2022. "Hardware and Software Implementation for Solar Hot Water System in Northern Regions of Russia," Energies, MDPI, vol. 15(4), pages 1-18, February.
    5. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    6. Kirill A. Bashmur & Oleg A. Kolenchukov & Vladimir V. Bukhtoyarov & Vadim S. Tynchenko & Sergei O. Kurashkin & Elena V. Tsygankova & Vladislav V. Kukartsev & Roman B. Sergienko, 2022. "Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic," Sustainability, MDPI, vol. 14(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taner Akan & Halil İbrahim Gündüz & Tara Vanlı & Ahmet Baran Zeren & Ali Haydar Işık & Tamerlan Mashadihasanli, 2023. "Why are some countries cleaner than others? New evidence from macroeconomic governance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6167-6223, July.
    2. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    3. Chang, Chun-Ping & Dong, Minyi & Liu, Jiliang, 2019. "Environmental Governance and Environmental Performance," ADBI Working Papers 936, Asian Development Bank Institute.
    4. Shahzad, Umer & Schneider, Nicolas & Ben Jebli, Mehdi, 2021. "How coal and geothermal energies interact with industrial development and carbon emissions? An autoregressive distributed lags approach to the Philippines," Resources Policy, Elsevier, vol. 74(C).
    5. Yugang He, 2022. "Investigating the Routes toward Environmental Sustainability: Fresh Insights from Korea," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    6. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    7. Huan Zhang, 2021. "Technology Innovation, Economic Growth and Carbon Emissions in the Context of Carbon Neutrality: Evidence from BRICS," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    8. Yongjiao Wu & Huazhu Zheng & Yu Li & Claudio O. Delang & Jiao Qian, 2021. "Carbon Productivity and Mitigation: Evidence from Industrial Development and Urbanization in the Central and Western Regions of China," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    9. Bingjie Xu & Ruoyu Zhong & Hui Qiao, 2020. "The impact of biofuel consumption on CO2 emissions: A panel data analysis for seven selected G20 countries," Energy & Environment, , vol. 31(8), pages 1498-1514, December.
    10. Chun-Ping Chang & Minyi Dong & Jiliang Liu, 2019. "Environmental Governance and Environmental Performance," Working Papers id:13023, eSocialSciences.
    11. Chopra, Ritika & Magazzino, Cosimo & Shah, Muhammad Ibrahim & Sharma, Gagan Deep & Rao, Amar & Shahzad, Umer, 2022. "The role of renewable energy and natural resources for sustainable agriculture in ASEAN countries: Do carbon emissions and deforestation affect agriculture productivity?," Resources Policy, Elsevier, vol. 76(C).
    12. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    13. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1, March.
    15. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    16. Luigi Aldieri & Concetto Paolo Vinci, 2019. "Firm Size and Sustainable Innovation: A Theoretical and Empirical Analysis," Sustainability, MDPI, vol. 11(10), pages 1-9, May.
    17. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    18. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    19. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    20. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3691-:d:578837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.