IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13083-d940431.html
   My bibliography  Save this article

Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic

Author

Listed:
  • Kirill A. Bashmur

    (Department of Technological Machines and Equipment of Oil and Gas Complex, School of Petroleum and Natural Gas Engineering, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Oleg A. Kolenchukov

    (Department of Technological Machines and Equipment of Oil and Gas Complex, School of Petroleum and Natural Gas Engineering, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Vladimir V. Bukhtoyarov

    (Department of Technological Machines and Equipment of Oil and Gas Complex, School of Petroleum and Natural Gas Engineering, Siberian Federal University, 660041 Krasnoyarsk, Russia
    Digital Material Science: New Materials and Technologies, Bauman Moscow State Technical University, 105005 Moscow, Russia)

  • Vadim S. Tynchenko

    (Department of Technological Machines and Equipment of Oil and Gas Complex, School of Petroleum and Natural Gas Engineering, Siberian Federal University, 660041 Krasnoyarsk, Russia
    Digital Material Science: New Materials and Technologies, Bauman Moscow State Technical University, 105005 Moscow, Russia
    Information-Control Systems Department, Institute of Computer Science and Telecommunications, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)

  • Sergei O. Kurashkin

    (Digital Material Science: New Materials and Technologies, Bauman Moscow State Technical University, 105005 Moscow, Russia
    Information-Control Systems Department, Institute of Computer Science and Telecommunications, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia
    Laboratory of Biofuel Compositions, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Elena V. Tsygankova

    (Department of Foreign Languages for Natural Science, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Vladislav V. Kukartsev

    (Digital Material Science: New Materials and Technologies, Bauman Moscow State Technical University, 105005 Moscow, Russia
    Department of Informatics, Institute of Space and Information Technologies, Siberian Federal University, 660041 Krasnoyarsk, Russia
    Department of Information Economic Systems, Institute of Engineering and Economics, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)

  • Roman B. Sergienko

    (Machine Learning Department, Gini Gmbh, 80339 Munich, Germany)

Abstract

This article is a compilation of interdisciplinary studies aimed at ensuring the environmental, political, and economic sustainability of oil and gas-producing countries with a focus on areas with many years of permafrost. One of the main concepts adopted in this research was the desire to show that confronting various energy lobbies is not mandatory and that it is necessary to find compromises by finding and introducing innovative technologies for integrated development for the benefit of society, industry, and the state. This is particularly relevant due to the increasing share of hard-to-recover hydrocarbon reserves, widely represented in the fields of the Eastern Siberian Arctic, and because Russia is the leader in flare emissions. We thus present the relevance of using these gases as industrial waste while reducing the carbon footprint. The technology of biofuel production based on the use of supercritical liquid extraction in a well extractor is presented as a result of the development of the presented experimental devices representing the investigation of the processes of extraction in wells and reactors for the distillation of hydrocarbons from heavy oil components. The obtained yield of the desired product (hydrogen) of the thermocatalytic pyrolysis of the test extract was in the range of 44 to 118 L/h, depending on the catalyst. This information can help inform the direction of future ecological engineering activities in the Eastern Siberian Arctic region.

Suggested Citation

  • Kirill A. Bashmur & Oleg A. Kolenchukov & Vladimir V. Bukhtoyarov & Vadim S. Tynchenko & Sergei O. Kurashkin & Elena V. Tsygankova & Vladislav V. Kukartsev & Roman B. Sergienko, 2022. "Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13083-:d:940431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yulia Grama, 2012. "The Analysis of Russian Oil and Gas Reserves," International Journal of Energy Economics and Policy, Econjournals, vol. 2(2), pages 82-91.
    2. Sergey Tishkov & Anton Shcherbak & Valentina Karginova-Gubinova & Alexander Volkov & Arsen Tleppayev & Antonina Pakhomova, 2020. "Assessment the role of renewable energy in socio-economic development of rural and Arctic regions," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 3354-3368, June.
    3. Enzo Galloni & Davide Lanni & Gustavo Fontana & Gabriele D’Antuono & Simone Stabile, 2022. "Performance Estimation of a Downsized SI Engine Running with Hydrogen," Energies, MDPI, vol. 15(13), pages 1-12, June.
    4. Albara M. Mustafa & Abbas Barabadi, 2021. "Resilience Assessment of Wind Farms in the Arctic with the Application of Bayesian Networks," Energies, MDPI, vol. 14(15), pages 1-15, July.
    5. Jing, Rui & Lin, Yufeng & Khanna, Nina & Chen, Xiang & Wang, Meng & Liu, Jiahui & Lin, Jianyi, 2021. "Balancing the Energy Trilemma in energy system planning of coastal cities," Applied Energy, Elsevier, vol. 283(C).
    6. Lebunu Hewage Udara Willhelm Abeydeera & Jayantha Wadu Mesthrige & Tharushi Imalka Samarasinghalage, 2019. "Global Research on Carbon Emissions: A Scientometric Review," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    7. Tingen Fan & Wenjiang Xu & Wei Zheng & Weidong Jiang & Xiuchao Jiang & Taichao Wang & Xiaohu Dong, 2022. "A Production Performance Model of the Cyclic Steam Stimulation Process in Multilayer Heavy Oil Reservoirs," Energies, MDPI, vol. 15(5), pages 1-21, February.
    8. Söderbergh, Bengt & Jakobsson, Kristofer & Aleklett, Kjell, 2010. "European energy security: An analysis of future Russian natural gas production and exports," Energy Policy, Elsevier, vol. 38(12), pages 7827-7843, December.
    9. Violeta Makareviciene & Egle Sendzikiene, 2022. "Application of Microalgae Biomass for Biodiesel Fuel Production," Energies, MDPI, vol. 15(11), pages 1-33, June.
    10. Viktoriia Brazovskaia & Svetlana Gutman & Andrey Zaytsev, 2021. "Potential Impact of Renewable Energy on the Sustainable Development of Russian Arctic Territories," Energies, MDPI, vol. 14(12), pages 1-19, June.
    11. Beigiparast, Siavash & Tahouni, Nassim & Abbasi, Mojgan & Panjeshahi, M. Hassan, 2021. "Flare gas reduction in an olefin plant under different start-up procedures," Energy, Elsevier, vol. 214(C).
    12. Valery Salygin & Igbal Guliev & Natalia Chernysheva & Elizaveta Sokolova & Natalya Toropova & Larisa Egorova, 2019. "Global Shale Revolution: Successes, Challenges, and Prospects," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    13. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    14. Haider Al-Rubaye & Joseph D. Smith & Mohammed H. S. Zangana & Prashant Nagapurkar & Yishu Zhou & Greg Gelles, 2022. "Advances in Energy Hybridization for Resilient Supply: A Sustainable Approach to the Growing World Demand," Energies, MDPI, vol. 15(16), pages 1-13, August.
    15. Eshaghi, Soroush & Hamrang, Farzad, 2021. "An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant," Energy, Elsevier, vol. 228(C).
    16. Hyunsoo Kang, 2022. "An Analysis of the Relationship between Energy Trilemma and Economic Growth," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    17. Nadezhda Stepanova & Daria Gritsenko & Tuyara Gavrilyeva & Anna Belokur, 2020. "Sustainable Development in Sparsely Populated Territories: Case of the Russian Arctic and Far East," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    18. Daniele Duca & Giuseppe Toscano, 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability," Resources, MDPI, vol. 11(6), pages 1-6, June.
    19. Alison D. Perrin & Gita Ljubicic & Aynslie Ogden, 2021. "Northern Research Policy Contributions to Canadian Arctic Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-39, October.
    20. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    21. Christopher Pike & Erin Whitney & Michelle Wilber & Joshua S. Stein, 2021. "Field Performance of South-Facing and East-West Facing Bifacial Modules in the Arctic," Energies, MDPI, vol. 14(4), pages 1-15, February.
    22. Qiu, Shuo & Lei, Tian & Wu, Jiangtao & Bi, Shengshan, 2021. "Energy demand and supply planning of China through 2060," Energy, Elsevier, vol. 234(C).
    23. Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.
    24. Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
    25. Magnus de Witt & Hlynur Stefánsson & Ágúst Valfells & Joan Nymand Larsen, 2021. "Availability and Feasibility of Renewable Resources for Electricity Generation in the Arctic: The Cases of Longyearbyen, Maniitsoq, and Kotzebue," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    26. Daniel J. Sambor & Michelle Wilber & Erin Whitney & Mark Z. Jacobson, 2020. "Development of a Tool for Optimizing Solar and Battery Storage for Container Farming in a Remote Arctic Microgrid," Energies, MDPI, vol. 13(19), pages 1-18, October.
    27. Merritt R. Turetsky & Benjamin W. Abbott & Miriam C. Jones & Katey Walter Anthony & David Olefeldt & Edward A. G. Schuur & Charles Koven & A. David McGuire & Guido Grosse & Peter Kuhry & Gustaf Hugeli, 2019. "Permafrost collapse is accelerating carbon release," Nature, Nature, vol. 569(7754), pages 32-34, May.
    28. Alexey Sorokin & Alexander Bolotov & Mikhail Varfolomeev & Ilgiz Minkhanov & Azat Gimazov & Evgeny Sergeyev & Angelica Balionis, 2021. "Feasibility of Gas Injection Efficiency for Low-Permeability Sandstone Reservoir in Western Siberia: Experiments and Numerical Simulation," Energies, MDPI, vol. 14(22), pages 1-12, November.
    29. Praskovya L. Pavlova & Andrey V. Minakov & Dmitriy V. Platonov & Vladimir A. Zhigarev & Dmitriy V. Guzei, 2022. "Supercritical Fluid Application in the Oil and Gas Industry: A Comprehensive Review," Sustainability, MDPI, vol. 14(2), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg A. Kolenchukov & Kirill A. Bashmur & Sergei O. Kurashkin & Elena V. Tsygankova & Natalia A. Shepeta & Roman B. Sergienko & Praskovya L. Pavlova & Roman A. Vaganov, 2023. "Numerical and Experimental Study of Heat Transfer in Pyrolysis Reactor Heat Exchange Channels with Different Hemispherical Protrusion Geometries," Energies, MDPI, vol. 16(16), pages 1-27, August.
    2. Diana Dmitrieva & Amina Chanysheva & Victoria Solovyova, 2023. "A Conceptual Model for the Sustainable Development of the Arctic’s Mineral Resources Considering Current Global Trends: Future Scenarios, Key Actors, and Recommendations," Resources, MDPI, vol. 12(6), pages 1-28, May.
    3. Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malek Al-Chalabi, 2023. "Targeted and Tangential Effects—A Novel Framework for Energy Research and Practitioners," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    2. Jin-Li Hu, 2022. "Energy Resilience in Presence of Natural and Social Uncertainties," Energies, MDPI, vol. 15(18), pages 1-3, September.
    3. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    4. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    5. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    6. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    7. Gaoyuan Xu & Xiaojing Wang, 2022. "Research on the Electricity Market Clearing Model for Renewable Energy," Energies, MDPI, vol. 15(23), pages 1-16, December.
    8. Chi Yong & Mu Tong & Zhongyi Yang & Jixian Zhou, 2023. "Conventional Natural Gas Project Investment and Decision Making under Multiple Uncertainties," Energies, MDPI, vol. 16(5), pages 1-30, February.
    9. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    10. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    11. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    12. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    13. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    14. Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
    15. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    16. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    17. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    18. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    19. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    20. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13083-:d:940431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.