IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221008434.html
   My bibliography  Save this article

An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant

Author

Listed:
  • Eshaghi, Soroush
  • Hamrang, Farzad

Abstract

The compression process in flare gas recovery, commonly carried by compressors, is the costliest. The use of an integrated gas-gas ejector system instead of a compressor is proposed and studied technically and economically in this paper. Thus, the flare gas recovery process modeling, including the gas sweetening unit, is performed for both compressor and ejector systems. Different arrangements of the integrated ejector system in the form of multi-stage ejectors (series) in parallel branches are also investigated. To find the geometry of ejectors for simulation of integrated ejector system in Aspen HYSYS, as well as the prediction of the ejector performance under different pressures and mass flow rates of inlet gas, a computer code was developed in MATLAB software. Results of the economic analysis demonstrated the compression method with a parallel three-branch arrangement (containing a three-stage ejector in each branch) were the most appropriate solution in the flare gas recovery of a typical oil refinery plant, with an investment cost of 4.84 $M and accepted payback period of 2 years and the recovery of approximately 90% flare gas volume during normal operation.

Suggested Citation

  • Eshaghi, Soroush & Hamrang, Farzad, 2021. "An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008434
    DOI: 10.1016/j.energy.2021.120594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
    2. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    3. Comodi, Gabriele & Renzi, Massimiliano & Rossi, Mosè, 2016. "Energy efficiency improvement in oil refineries through flare gas recovery technique to meet the emission trading targets," Energy, Elsevier, vol. 109(C), pages 1-12.
    4. Zolfaghari, Mohabbat & Pirouzfar, Vahid & Sakhaeinia, Hossein, 2017. "Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants," Energy, Elsevier, vol. 124(C), pages 481-491.
    5. Ehsan Barekat-Rezaei & Mahmood Farzaneh-Gord & Alireza Arjomand & Mohsen Jannatabadi & Mohammad Hossein Ahmadi & Wei-Mon Yan, 2018. "Thermo–Economical Evaluation of Producing Liquefied Natural Gas and Natural Gas Liquids from Flare Gases," Energies, MDPI, vol. 11(7), pages 1-17, July.
    6. Nezhadfard, Mahya & Khalili-Garakani, Amirhossein, 2020. "Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios," Energy, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Fei & Yang, Changjin & Li, Biao & Silang, Yangji & Zhu, Yuhui & Farkoush, Saeid Gholami, 2022. "Thermodynamic and economic sensitivity analyses of a geothermal-based trigeneration system; performance enhancement through determining the best zeotropic working fluid," Energy, Elsevier, vol. 246(C).
    2. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
    3. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    4. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    5. Kirill A. Bashmur & Oleg A. Kolenchukov & Vladimir V. Bukhtoyarov & Vadim S. Tynchenko & Sergei O. Kurashkin & Elena V. Tsygankova & Vladislav V. Kukartsev & Roman B. Sergienko, 2022. "Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    6. Chen, Heng & Alzahrani, Huda A. & Amin, Mohammed A. & Sun, Minghui, 2023. "Towards sustainable development through the design, multi-aspect analyses, and multi-objective optimization of a novel solar-based multi-generation system," Energy, Elsevier, vol. 267(C).
    7. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    8. Cao, Yue & Hu, Hui & Chen, Ranjing & He, Tianyu & Si, Fengqi, 2023. "Comparative analysis on thermodynamic performance of combined heat and power system employing steam ejector as cascaded heat sink," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luisa Fernanda Ibañez-Gómez & Sebastian Albarracín-Quintero & Santiago Céspedes-Zuluaga & Erik Montes-Páez & Oswaldo Hideo Ando Junior & João Paulo Carmo & João Eduardo Ribeiro & Melkzedekue Moraes Al, 2022. "Process Optimization of the Flaring Gas for Field Applications," Energies, MDPI, vol. 15(20), pages 1-19, October.
    2. Beigiparast, Siavash & Tahouni, Nassim & Abbasi, Mojgan & Panjeshahi, M. Hassan, 2021. "Flare gas reduction in an olefin plant under different start-up procedures," Energy, Elsevier, vol. 214(C).
    3. Rodrigues, A.C.C., 2022. "Decreasing natural gas flaring in Brazilian oil and gas industry," Resources Policy, Elsevier, vol. 77(C).
    4. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Ehsan Barekat-Rezaei & Mahmood Farzaneh-Gord & Alireza Arjomand & Mohsen Jannatabadi & Mohammad Hossein Ahmadi & Wei-Mon Yan, 2018. "Thermo–Economical Evaluation of Producing Liquefied Natural Gas and Natural Gas Liquids from Flare Gases," Energies, MDPI, vol. 11(7), pages 1-17, July.
    6. Li, Xin & Hu, Longhua & Shang, Fengju, 2018. "Flame downwash transition and its maximum length with increasing fuel supply of non-premixed jet in cross flow," Energy, Elsevier, vol. 164(C), pages 298-305.
    7. Hamza Semmari & Abdelkader Filali & Sofiane Aberkane & Renaud Feidt & Michel Feidt, 2020. "Flare Gas Waste Heat Recovery: Assessment of Organic Rankine Cycle for Electricity Production and Possible Coupling with Absorption Chiller," Energies, MDPI, vol. 13(9), pages 1-16, May.
    8. Nezhadfard, Mahya & Khalili-Garakani, Amirhossein, 2020. "Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios," Energy, Elsevier, vol. 204(C).
    9. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    10. Zardoya, Ander Ruiz & Lucena, Iñaki Loroño & Bengoetxea, Iñigo Oregui & Orosa, José A., 2023. "Research on the new combustion chamber design to operate with low methane number fuels in an internal combustion engine with pre-chamber," Energy, Elsevier, vol. 275(C).
    11. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    12. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    13. Mohammad Mehdi Parivazh & Milad Mousavi & Mansoor Naderi & Amir Rostami & Mahdieh Dibaj & Mohammad Akrami, 2022. "The Feasibility Study, Exergy, and Exergoeconomic Analyses of a Novel Flare Gas Recovery System," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    14. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    15. Jing Chen & Pengfei Gui & Tao Ding & Sanggyun Na & Yingtang Zhou, 2019. "Optimization of Transportation Routing Problem for Fresh Food by Improved Ant Colony Algorithm Based on Tabu Search," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    16. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    17. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    18. Yasmin Saif & Mahwish Ali & Ian M. Jones & Safia Ahmed, 2021. "Performance Evaluation of a Field-Scale Anaerobic Baffled Reactor as an Economic and Sustainable Solution for Domestic Wastewater Treatment," Sustainability, MDPI, vol. 13(18), pages 1-11, September.
    19. Zardoya, Ander Ruiz & Lucena, Iñaki Loroño & Bengoetxea, Iñigo Oregui & Orosa, José A., 2022. "Research on an internal combustion engine with an injected pre-chamber to operate with low methane number fuels for future gas flaring reduction," Energy, Elsevier, vol. 253(C).
    20. Miroslav Variny & Kristián Hanus & Marek Blahušiak & Patrik Furda & Peter Illés & Ján Janošovský, 2021. "Energy and Environmental Assessment of Steam Management Optimization in an Ethylene Plant," IJERPH, MDPI, vol. 18(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.