IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222009999.html
   My bibliography  Save this article

Research on an internal combustion engine with an injected pre-chamber to operate with low methane number fuels for future gas flaring reduction

Author

Listed:
  • Zardoya, Ander Ruiz
  • Lucena, Iñaki Loroño
  • Bengoetxea, Iñigo Oregui
  • Orosa, José A.

Abstract

Flaring gas is the action of burning waste crude natural gas that is not possible to process or sell during the extraction and processing of oil and gas extraction. However, the surge of the oil and gas (O&G) fields caused an augmentation of flared gas; making society aware of its impact on the planet. To solve this problem, internal combustion engines showed clear advantages. However, there is a lack of information about how to utilize this associated petroleum gas (APG) as fuel for these engines due to its reduced methane number (MN). A methodical investigation about the optimal combustion and design needs for low MN fuels is proposed based on tests conducted in a natural gas engine with an injected pre-chamber ignition technology and a future technology that could replace flaring is proposed. Experiments conducted when using low MN gases showed different misfire limits and knocking margins. A 15% efficiency drop was obtained, however, this could be considered as a good performance as the Brake Mean Effective Pressure (BMEP) or output power reduction was 53.3%. In consequence, different engine design modifications are proposed to improve the former situation.

Suggested Citation

  • Zardoya, Ander Ruiz & Lucena, Iñaki Loroño & Bengoetxea, Iñigo Oregui & Orosa, José A., 2022. "Research on an internal combustion engine with an injected pre-chamber to operate with low methane number fuels for future gas flaring reduction," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009999
    DOI: 10.1016/j.energy.2022.124096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Deepak Kumar & Tirkey, Jeewan Vachan, 2022. "Performance optimization through response surface methodology of an integrated coal gasification and CI engine fuelled with diesel and low-grade coal-based producer gas," Energy, Elsevier, vol. 238(PC).
    2. Nezhadfard, Mahya & Khalili-Garakani, Amirhossein, 2020. "Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios," Energy, Elsevier, vol. 204(C).
    3. Szymon Kuczyński & Mariusz Łaciak & Adam Szurlej & Tomasz Włodek, 2020. "Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement," Energies, MDPI, vol. 13(19), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quintero-Coronel, Daniel A. & Salazar, Adalberto & Pupo-Roncallo, Oscar R. & Bula, Antonio & Corredor, Lesme & Amador, German & Gonzalez-Quiroga, Arturo, 2023. "Assessment of the interchangeability of coal-biomass syngas with natural gas for atmospheric burners and high-pressure combustion applications," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zardoya, Ander Ruiz & Lucena, Iñaki Loroño & Bengoetxea, Iñigo Oregui & Orosa, José A., 2023. "Research on the new combustion chamber design to operate with low methane number fuels in an internal combustion engine with pre-chamber," Energy, Elsevier, vol. 275(C).
    2. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    3. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Sharma, Prabhakar & Bora, Bhaskor J., 2023. "Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen," Energy, Elsevier, vol. 270(C).
    5. Luisa Fernanda Ibañez-Gómez & Sebastian Albarracín-Quintero & Santiago Céspedes-Zuluaga & Erik Montes-Páez & Oswaldo Hideo Ando Junior & João Paulo Carmo & João Eduardo Ribeiro & Melkzedekue Moraes Al, 2022. "Process Optimization of the Flaring Gas for Field Applications," Energies, MDPI, vol. 15(20), pages 1-19, October.
    6. Rodrigues, A.C.C., 2022. "Decreasing natural gas flaring in Brazilian oil and gas industry," Resources Policy, Elsevier, vol. 77(C).
    7. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    8. Das, Hirakh Jyoti & Saikia, Rituraj & Mahanta, Pinakeswar, 2023. "Thermo-economic assessment of bubbling fluidized bed paddy dryers," Energy, Elsevier, vol. 263(PC).
    9. Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
    10. Eshaghi, Soroush & Hamrang, Farzad, 2021. "An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant," Energy, Elsevier, vol. 228(C).
    11. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    12. Anand, Amrit & Kachhap, Anju & Gautam, Shalini, 2023. "Synergistic effect of coal and biomass gasification and organo-inorganic elemental impact on gasification performance and product gas," Energy, Elsevier, vol. 282(C).
    13. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    14. Alruqi, Mansoor & Sharma, Prabhakar & Ağbulut, Ümit, 2023. "Investigations on biomass gasification derived producer gas and algal biodiesel to power a dual-fuel engines: Application of neural networks optimized with Bayesian approach and K-cross fold," Energy, Elsevier, vol. 282(C).
    15. Roy, Dibyendu, 2023. "Multi-objective optimization of biomass gasification based combined heat and power system employing molten carbonate fuel cell and externally fired gas turbine," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.