IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Consistent ranking of volatility models"

by Hansen, Peter Reinhard & Lunde, Asger

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Martens, M.P.E. & van Dijk, D.J.C., 2006. "Measuring volatility with the realized range," Econometric Institute Research Papers EI 2006-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  2. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
  3. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
  4. Jeroen Rombouts & Lars Peter Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
  5. BAUWENS, Luc & SUCARRAT, Genaro, "undated". "General-to-specific modelling of exchange rate volatility: a forecast evaluation," CORE Discussion Papers RP 2234, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  6. Ali Babikir & Rangan Gupta & Chance Mwabutwa & Emmanuel Owusu-Sekyere, 2010. "Structural Breaks and GARCH Models of Stock Return Volatility: The Case of South Africa," Working Papers 201030, University of Pretoria, Department of Economics.
  7. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  8. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "Emerging versus developed volatility indices. The comparison of VIW20 and VIX indices," Working Papers 2009-11, Faculty of Economic Sciences, University of Warsaw.
  9. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  10. Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016. "Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
  11. García-Ferrer, Antonio & González-Prieto, Ester & Peña, Daniel, 2012. "A conditionally heteroskedastic independent factor model with an application to financial stock returns," International Journal of Forecasting, Elsevier, vol. 28(1), pages 70-93.
  12. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
  13. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2010. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," Working Papers 10-06, Duke University, Department of Economics.
  14. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
  15. Ahoniemi, Katja & Lanne, Markku, 2013. "Overnight stock returns and realized volatility," International Journal of Forecasting, Elsevier, vol. 29(4), pages 592-604.
  16. Gabriel Rodríguez, 2015. "Modeling Latin-American Stock Markets Volatility: Varying Probabilities and Mean Reversion in a Random Level Shifts Model," Documentos de Trabajo / Working Papers 2015-403, Departamento de Economía - Pontificia Universidad Católica del Perú.
  17. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
  18. Jeff Fleming & Chris Kirby, 2013. "Component-Driven Regime-Switching Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(2), pages 263-301, March.
  19. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 3, pages 1-33.
  20. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, 09.
  21. Bartosz Gębka, 2012. "The Dynamic Relation Between Returns, Trading Volume, And Volatility: Lessons From Spillovers Between Asia And The United States," Bulletin of Economic Research, Wiley Blackwell, vol. 64(1), pages 65-90, 01.
  22. Gael M. Martin & Andrew Reidy & Jill Wright, 2006. "Assessing the Impact of Market Microstructure Noise and Random Jumps on the Relative Forecasting Performance of Option-Implied and Returns-Based Volatility," Monash Econometrics and Business Statistics Working Papers 10/06, Monash University, Department of Econometrics and Business Statistics.
  23. Silvia Muzzioli, 2011. "Corridor implied volatility and the variance risk premium in the Italian market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 11112, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
  24. Ahoniemi, Katja & Lanne, Markku, 2010. "Realized volatility and overnight returns," Research Discussion Papers 19/2010, Bank of Finland.
  25. Lanne, Markku, 2007. "Forecasting realized exchange rate volatility by decomposition," International Journal of Forecasting, Elsevier, vol. 23(2), pages 307-320.
  26. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
  27. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
  28. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Realized Volatility Using Subsample Averaging," Working Papers 201410, University of California at Riverside, Department of Economics.
  29. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1174-1206, October.
  30. Jiawen Xu & Pierre Perron, 2013. "Forecasting Return Volatility: Level Shifts with Varying Jump Probability and Mean Reversion," Boston University - Department of Economics - Working Papers Series 2013-021, Boston University - Department of Economics.
  31. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
  32. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
  33. de Vilder, Robin G. & Visser, Marcel P., 2007. "Volatility Proxies for Discrete Time Models," MPRA Paper 4917, University Library of Munich, Germany.
  34. Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
  35. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
  36. Chen, Chun-Hung & Yu, Wei-Choun & Zivot, Eric, 2012. "Predicting stock volatility using after-hours information: Evidence from the NASDAQ actively traded stocks," International Journal of Forecasting, Elsevier, vol. 28(2), pages 366-383.
  37. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
  38. Marcel Scharth & Marcelo Cunha Medeiros, 2006. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," Textos para discussão 532, Department of Economics PUC-Rio (Brazil).
  39. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.
  40. Tianyang Wang & James Dyer & Warren Hahn, 2015. "A copula-based approach for generating lattices," Review of Derivatives Research, Springer, vol. 18(3), pages 263-289, October.
  41. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
  42. Politis, Dimitris N & Thomakos, Dimitrios D, 2008. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," University of California at San Diego, Economics Working Paper Series qt982208kx, Department of Economics, UC San Diego.
  43. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, Open Access Journal, vol. 3(2), pages 289-289, May.
  44. Rasmus T. Varneskov & Pierre Perron, 2015. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series wp2015-015, Boston University - Department of Economics.
  45. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
  46. Stavros Stavroyiannis, 2016. "Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution," Papers 1602.05749, arXiv.org.
  47. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
  48. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
  49. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
  50. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized volatility or price range: Evidence from a discrete simulation of the continuous time diffusion process," Economic Modelling, Elsevier, vol. 30(C), pages 212-216.
  51. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
  52. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, 06.
  53. Silvia Muzzioli, 2013. "The Forecasting Performance of Corridor Implied Volatility in the Italian Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 359-386, March.
  54. LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," CORE Discussion Papers 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  55. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
  56. Heejoon Han, 2016. "Quantile Dependence between Stock Markets and its Application in Volatility Forecasting," Papers 1608.07193, arXiv.org.
  57. Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CoFE Discussion Paper 08-06, Center of Finance and Econometrics, University of Konstanz.
  58. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  59. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
  60. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
  61. Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 12/06, University of Canterbury, Department of Economics and Finance.
  62. Sucarrat, Genaro, 2008. "Forecast Evaluation of Explanatory Models of Financial Return Variability," Economics Discussion Papers 2008-18, Kiel Institute for the World Economy (IfW).
  63. M. Pilar Muñoz & M. Dolores Marquez & Lesly M. Acosta, 2007. "Forecasting volatility by means of threshold models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 343-363.
  64. Byun, Sung Je, 2016. "The usefulness of cross-sectional dispersion for forecasting aggregate stock price volatility," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 162-180.
  65. Caporin Massimiliano & Paruolo Paolo, 2005. "Spatial effects in multivariate ARCH," Economics and Quantitative Methods qf0501, Department of Economics, University of Insubria.
  66. Matteo Luciani & David Veredas, "undated". "A simple model for vast panels of volatilities," ULB Institutional Repository 2013/136239, ULB -- Universite Libre de Bruxelles.
  67. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
  68. Shao, Xi-Dong & Lian, Yu-Jun & Yin, Lian-Qian, 2009. "Forecasting Value-at-Risk using high frequency data: The realized range model," Global Finance Journal, Elsevier, vol. 20(2), pages 128-136.
  69. Chun Liu & John M Maheu, 2008. "Forecasting Realized Volatility: A Bayesian Model Averaging Approach," Working Papers tecipa-313, University of Toronto, Department of Economics.
  70. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
  71. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
  72. Kwame Osei-Assibey, 2014. "Sign asymmetry and exchange rate market volatility: empirical evidence from two developing countries," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 7(2), pages 107-121.
  73. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(01), pages 60-93, February.
  74. Gabriel Rodríguez, 2016. " Modelando la volatilidad de los mercados bursátiles y cambiarios en América Latina: Aplicación empírica de un modelo de cambios de nivel aleatorios y larga memoria genuina," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
  75. Mike Buckle & Jing Chen & Julian Williams, 2014. "How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 542-557, November.
  76. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
  77. Gabriel Rodriguez & Roxana Tramontana, 2014. " An Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns," Documentos de Trabajo / Working Papers 2014-385, Departamento de Economía - Pontificia Universidad Católica del Perú.
  78. Junior Ojeda & Gabriel Rodriguez, 2014. " An Application of a Random Level Shifts Model to the Volatility of Peruvian Stock and Exchange Rates Returns," Documentos de Trabajo / Working Papers 2014-383, Departamento de Economía - Pontificia Universidad Católica del Perú.
  79. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
  80. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, 04.
  81. Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, 09.
  82. Michael McAleer & Massimiliano Caporin, 2011. "Ranking Multivariate GARCH Models by Problem Dimension:An Empirical Evaluation," KIER Working Papers 778, Kyoto University, Institute of Economic Research.
  83. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 8-8, February.
  84. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
  85. Vincenzo Candila, 2013. "A Comparison Of The Forecasting Performances Of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
  86. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
  87. Zhongjun Qu & Pierre Perron, 2008. "A Stochastic Volatility Model with Random Level Shifts: Theory and Applications to S&P 500 and NASDAQ Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-007, Boston University - Department of Economics.
  88. Markku Lanne, 2006. "Forecasting Realized Volatility by Decomposition," Economics Working Papers ECO2006/20, European University Institute.
  89. Hecq Alain & Laurent Sébastien & Palm Franz, 2011. "Common intraday periodicity," Research Memorandum 010, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  90. Degiannakis, Stavros & Floros, Christos, 2013. "Modeling CAC40 volatility using ultra-high frequency data," Research in International Business and Finance, Elsevier, vol. 28(C), pages 68-81.
  91. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
  92. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
  93. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
  94. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
  95. Christophe Hurlin & Sebastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2015. "Risk Measure Inference," Working Papers halshs-00877279, HAL.
  96. Dimitris N. Politis & Dimitrios D. Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Paper Series 44_07, The Rimini Centre for Economic Analysis.
  97. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
  98. Gabriel Rodríguez & José Carlos Gonzáles Tanaka, 2016. " Una aplicación empírica de un modelo de cambios de nivel aleatorios con probabilidades cambiantes y reversión a la media a la volatilidad de los retornos cambiarios en América Latina," Documentos de Trabajo / Working Papers 2016-415, Departamento de Economía - Pontificia Universidad Católica del Perú.
  99. Fiszeder, Piotr & Perczak, Grzegorz, 2016. "Low and high prices can improve volatility forecasts during periods of turmoil," International Journal of Forecasting, Elsevier, vol. 32(2), pages 398-410.
  100. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
  101. Matteo Luciani & David Veredas, 2012. "A model for vast panels of volatilities," Working Papers 1230, Banco de España;Working Papers Homepage.
  102. Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
  103. Adam E Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2012. "Selecting forecasting models for portfolio allocation," NCER Working Paper Series 85, National Centre for Econometric Research.
  104. Atak, Alev & Kapetanios, George, 2013. "A factor approach to realized volatility forecasting in the presence of finite jumps and cross-sectional correlation in pricing errors," Economics Letters, Elsevier, vol. 120(2), pages 224-228.
  105. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
  106. Trino-Manuel Ñíguez & Javier Perote, 2012. "Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 600-627, 08.
  107. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.