IDEAS home Printed from https://ideas.repec.org/p/imd/wpaper/wp2011-09.html
   My bibliography  Save this paper

Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations

Author

Listed:
  • Alvaro Escribano

    () (Universidad Carlos III de Madrid)

  • Genaro Sucarrat

    () (BI Norwegian School of Management)

Abstract

General-to-Specific (GETS) modelling has witnessed major advances over the last decade thanks to the automation of multi-path GETS specification search. However, several scholars have argued that the estimation complexity associated with financial models constitutes an obstacle to multi-path GETS modelling in finance. Making use of a recent result on log-GARCH Models, we provide and study simple but general and flexible methods that automate financial multi-path GETS modelling. Starting from a general model where the mean specification can contain autoregressive (AR) terms and explanatory variables, and where the exponential volatility specification can include log-ARCH terms, asymmetry terms, volatility proxies and other explanatory variables, the algorithm we propose returns parsimonious mean and volatility specifications. The finite sample properties of the methods are studied by means of extensive Monte Carlo simulations, and two empirical applications suggest the methods are very useful in practice.

Suggested Citation

  • Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
  • Handle: RePEc:imd:wpaper:wp2011-09
    Note: This paper is included in the IMDEA Social Sciences Working Paper Series through the Bank of Spain Excellence Programme
    as

    Download full text from publisher

    File URL: http://repec.imdea.org/pdf/imdea-wp2011-09.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters,in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46 National Bureau of Economic Research, Inc.
    3. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    4. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    5. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    6. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    7. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    8. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    9. Hans-Martin Krolzig, 2003. "General-to-Specific Model Selection Procedures for Structural Vector Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 769-801, December.
    10. Andrew J. Patton & Kevin Sheppard, 2008. "Evaluating Volatility and Correlation Forecasts," OFRC Working Papers Series 2008fe22, Oxford Financial Research Centre.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Jurgen A. Doornik, 2008. "Encompassing and Automatic Model Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 915-925, December.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(02), pages 404-447, April.
    15. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    16. David F. Hendry & Hans-Martin Krolzig, 1999. "Improving on 'Data mining reconsidered' by K.D. Hoover and S.J. Perez," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 202-219.
    17. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    18. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    19. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 3, pages 1-33.
    20. Escribano, Álvaro & Sucarrat, Genaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    21. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escribano, Álvaro & Sucarrat, Genaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Cui, Jin & In, Francis & Maharaj, Elizabeth Ann, 2016. "What drives the Libor–OIS spread? Evidence from five major currency Libor–OIS spreads," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 358-375.

    More about this item

    Keywords

    general-to-specific; specification search; model selection; finance; volatility;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imd:wpaper:wp2011-09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (IMDEA RePEc Maintainer). General contact details of provider: http://edirc.repec.org/data/icimdes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.