IDEAS home Printed from https://ideas.repec.org/p/zur/iewwpx/259.html
   My bibliography  Save this paper

Formalized Data Snooping Based on Generalized Error Rates

Author

Listed:
  • Joseph P
  • Romano
  • Azeem M. Shaikh
  • Michael Wolf

Abstract

It is common in econometric applications that several hypothesis tests are carried out at the same time. The problem then becomes how to decide which hypotheses to reject, accounting for the multitude of tests. The classical approach is to control the familywise error rate (FWE), that is, the probability of one or more false rejections. But when the number of hypotheses under consideration is large, control of the FWE can become too demanding. As a result, the number of false hypotheses rejected may be small or even zero. This suggests replacing control of the FWE by a more liberal measure. To this end, we review a number of proposals from the statistical literature. We briefly discuss how these procedures apply to the general problem of model selection. A simulation study and two empirical applications illustrate the methods.

Suggested Citation

  • Joseph P & Romano & Azeem M. Shaikh & Michael Wolf, 2005. "Formalized Data Snooping Based on Generalized Error Rates," IEW - Working Papers 259, Institute for Empirical Research in Economics - University of Zurich.
  • Handle: RePEc:zur:iewwpx:259
    as

    Download full text from publisher

    File URL: http://www.econ.uzh.ch/static/wp_iew/iewwp259.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Wolf, Michael & Romano, Joseph P., 2001. "Improved nonparametric confidence intervals in time series regressions," DES - Working Papers. Statistics and Econometrics. WS ws010201, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    4. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    5. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    6. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2001. "Dangers of data mining: The case of calendar effects in stock returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 249-286, November.
    7. Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
    8. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    9. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2005. "Model confidence sets for forecasting models," FRB Atlanta Working Paper 2005-07, Federal Reserve Bank of Atlanta.
    10. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    11. Xiaotong Shen & Hsin-Cheng Huang & Jimmy Ye, 2004. "Inference After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 751-762, January.
    12. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    13. Kabaila, Paul & Leeb, Hannes, 2006. "On the Large-Sample Minimal Coverage Probability of Confidence Intervals After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 619-629, June.
    14. Abramovich, Felix & Benjamini, Yoav, 1996. "Adaptive thresholding of wavelet coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 351-361, August.
    15. Hidetoshi Shimodaira, 1998. "An Application of Multiple Comparison Techniques to Model Selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(1), pages 1-13, March.
    16. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "multiple testing," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
    17. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Data snooping; false discovery proportion; false discovery rate; generalized familywise error rate; model selection; multiple testing; stepwise methods;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:iewwpx:259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marita Kieser). General contact details of provider: http://edirc.repec.org/data/seizhch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.