IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v57y2019ics0927538x18300775.html
   My bibliography  Save this article

Tactical asset allocation on technical trading rules and data snooping

Author

Listed:
  • Yang, Junmin
  • Cao, Zhiguang
  • Han, Qiheng
  • Wang, Qiyu

Abstract

In this paper, we investigate the performance of tactical asset allocation on technical trading rules controlling for data snooping bias. By using reality check (RC), superior predictive ability (SPA) test and their extensions, and false discovery rate (FDR), we find that none of 15376 technical trading rules at monthly frequency outperforms buy-and-hold (B&H) strategy in terms of 1/N portfolio. In addition, we also investigate the performance of tactical asset allocation in terms of other usual portfolio strategies: minimum variance portfolio (MVP), tangency portfolio (TP), equally weighted risk contribution portfolio (ERCP), most diversified portfolio (MDP), Volatility timing portfolio (VTP) and Reward-to-risk timing portfolio (RRTP). Our empirical study shows that no tactical asset allocation strategies on technical trading rules outperform B&H benchmark. Our findings call into question the value of tactical asset allocation on technical trading rules.

Suggested Citation

  • Yang, Junmin & Cao, Zhiguang & Han, Qiheng & Wang, Qiyu, 2019. "Tactical asset allocation on technical trading rules and data snooping," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
  • Handle: RePEc:eee:pacfin:v:57:y:2019:i:c:s0927538x18300775
    DOI: 10.1016/j.pacfin.2018.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X18300775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2018.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    5. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    6. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
    7. Yu-Chin Hsu & Chung-Ming Kuan & Meng-Feng Yen, 2014. "A Generalized Stepwise Procedure with Improved Power for Multiple Inequalities Testing," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 730-755.
    8. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    9. Ko, Kuan-Cheng & Lin, Shinn-Juh & Su, Hsiang-Ju & Chang, Hsing-Hua, 2014. "Value investing and technical analysis in Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 14-36.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
    12. Robert Kosowski & Allan Timmermann & Russ Wermers & Hal White, 2006. "Can Mutual Fund “Stars” Really Pick Stocks? New Evidence from a Bootstrap Analysis," Journal of Finance, American Finance Association, vol. 61(6), pages 2551-2595, December.
    13. Kuang, P. & Schröder, M. & Wang, Q., 2014. "Illusory profitability of technical analysis in emerging foreign exchange markets," International Journal of Forecasting, Elsevier, vol. 30(2), pages 192-205.
    14. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    15. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    16. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    17. Eugene F. Fama & Kenneth R. French, 2010. "Luck versus Skill in the Cross‐Section of Mutual Fund Returns," Journal of Finance, American Finance Association, vol. 65(5), pages 1915-1947, October.
    18. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    19. Kirby, Chris & Ostdiek, Barbara, 2012. "It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(2), pages 437-467, April.
    20. repec:dau:papers:123456789/4688 is not listed on IDEAS
    21. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    22. Alhashel, Bader S. & Almudhaf, Fahad W. & Hansz, J. Andrew, 2018. "Can technical analysis generate superior returns in securitized property markets? Evidence from East Asia markets," Pacific-Basin Finance Journal, Elsevier, vol. 47(C), pages 92-108.
    23. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    24. Joseph P. Romano & Michael Wolf, "undated". "Control of Generalized Error Rates in Multiple Testing," IEW - Working Papers 245, Institute for Empirical Research in Economics - University of Zurich.
    25. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    26. Tiandu Wang & Qian Sun, 2015. "Why investors use technical analysis? Information discovery versus herding behavior," China Finance Review International, Emerald Group Publishing Limited, vol. 5(1), pages 53-68, February.
    27. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    28. Po-Hsuan Hsu & Chung-Ming Kuan, 2005. "Reexamining the Profitability of Technical Analysis with Data Snooping Checks," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 606-628.
    29. Christopher J. Neely, 1997. "Technical analysis in the foreign exchange market: a layman's guide," Review, Federal Reserve Bank of St. Louis, issue Sep, pages 23-38.
    30. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    31. Kosowski, Robert & Naik, Narayan Y. & Teo, Melvyn, 2007. "Do hedge funds deliver alpha? A Bayesian and bootstrap analysis," Journal of Financial Economics, Elsevier, vol. 84(1), pages 229-264, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Kuan-Hau & Su, Xuan-Qi & Lin, Li-Feng & Shih, Yi-Cheng, 2021. "Profitability of moving-average technical analysis over the firm life cycle: Evidence from Taiwan," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    2. Yafeng Qin & Guoyao Pan & Min Bai, 2020. "Improving market timing of time series momentum in the Chinese stock market," Applied Economics, Taylor & Francis Journals, vol. 52(43), pages 4711-4725, September.
    3. Yusuf Olatunji Oyedeko & Olusola Segun Kolawole & Regina Samson & Olena Voloshyna, 2023. "Moderating Effect of Tactical Asset Allocation on the Risk-Return Relationship in the Nigerian Stock Market," Oblik i finansi, Institute of Accounting and Finance, issue 2, pages 83-91, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    2. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    3. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan, 2016. "Technical trading: Is it still beating the foreign exchange market?," Journal of International Economics, Elsevier, vol. 102(C), pages 188-208.
    4. Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.
    5. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    6. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan & Li, Yan, 2024. "The out-of-sample performance of carry trades," Journal of International Money and Finance, Elsevier, vol. 143(C).
    7. Kevin Rink, 2023. "The predictive ability of technical trading rules: an empirical analysis of developed and emerging equity markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 403-456, December.
    8. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    9. Zarrabi, Nima & Snaith, Stuart & Coakley, Jerry, 2017. "FX technical trading rules can be profitable sometimes!," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 113-127.
    10. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    11. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    12. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    13. Sermpinis, Georgios & Hassanniakalager, Arman & Stasinakis, Charalampos & Psaradellis, Ioannis, 2021. "Technical analysis profitability and Persistence: A discrete false discovery approach on MSCI indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    14. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    15. Isakov, Dusan & Marti, Didier, 2011. "Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability," FSES Working Papers 421, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    16. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    17. Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
    18. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    19. Anghel, Dan Gabriel, 2022. "No pain, no gain: You should always incorporate trading costs for a bias-free evaluation of trading rule overperformance," Economics Letters, Elsevier, vol. 216(C).
    20. Flavio Ivo Riedlinger & João Nicolau, 2020. "The Profitability in the FTSE 100 Index: A New Markov Chain Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 61-81, March.

    More about this item

    Keywords

    RC; SPA; FDR; Tactical Asset allocation;
    All these keywords.

    JEL classification:

    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:57:y:2019:i:c:s0927538x18300775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.