IDEAS home Printed from https://ideas.repec.org/p/fri/fribow/fribow00421.html
   My bibliography  Save this paper

Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability

Author

Listed:
  • Isakov, Dusan
  • Marti, Didier

Abstract

This paper extends the literature on the profitability of technical analysis in three directions. First, we investigate the performance of complex trading rules based on moving averages computed over longer periods than those usually considered. Different trading rules are simulated on daily prices of the Standard & Poor’s 500 index and we find that trading rules are more profitable when signals are generated over long horizons. Second, we analyse whether financial leverage can improve the profitability of different strategies, which appears to be the case when leverage is achieved with debt. Third, we propose a new market timing test that assesses whether a trading strategy can generate signals corresponding to bull and bear markets. The results of this test show that complex rules produce high proportions of accurate signals.

Suggested Citation

  • Isakov, Dusan & Marti, Didier, 2011. "Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability," FSES Working Papers 421, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
  • Handle: RePEc:fri:fribow:fribow00421
    as

    Download full text from publisher

    File URL: http://doc.rero.ch/record/24769/files/WP_SES_421.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Blanchet-Scalliet, Christophette & Diop, Awa & Gibson, Rajna & Talay, Denis & Tanre, Etienne, 2007. "Technical analysis compared to mathematical models based methods under parameters mis-specification," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1351-1373, May.
    3. Kidd, Willis V. & Brorsen, B. Wade, 2004. "Why have the returns to technical analysis decreased?," Journal of Economics and Business, Elsevier, vol. 56(3), pages 159-176.
    4. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    5. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    6. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    7. Dueker, Michael & Neely, Christopher J., 2007. "Can Markov switching models predict excess foreign exchange returns?," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 279-296, February.
    8. Hans Dewachter & Marco Lyrio, 2005. "The economic value of technical trading rules: a nonparametric utility-based approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(1), pages 41-62.
    9. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    10. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    11. Skouras, Spyros, 2001. "Financial returns and efficiency as seen by an artificial technical analyst," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 213-244, January.
    12. Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
    13. repec:pri:cepsud:91malkiel is not listed on IDEAS
    14. Thomas Gehrig & Lukas Menkhoff, 2006. "Extended evidence on the use of technical analysis in foreign exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 327-338.
    15. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    16. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    17. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    18. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    19. Dewachter, Hans, 2001. "Can Markov switching models replicate chartist profits in the foreign exchange market?," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 25-41, February.
    20. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    21. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    22. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    23. Alan Goodacre & Jacqueline Bosher & Andrew Dove, 1999. "Testing the CRISMA trading system: evidence from the UK market," Applied Financial Economics, Taylor & Francis Journals, vol. 9(5), pages 455-468.
    24. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    25. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    26. Po-Hsuan Hsu & Chung-Ming Kuan, 2005. "Reexamining the Profitability of Technical Analysis with Data Snooping Checks," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 606-628.
    27. Adrian R. Pagan & Kirill A. Sossounov, 2003. "A simple framework for analysing bull and bear markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 23-46.
    28. Fung, William & Hsieh, David A, 2001. "The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 313-341.
    29. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osama El Ansary & Mona Atuea, 2017. "Testing the Effect of Technical Analysis Strategies on Achieving Abnormal Return: Evidence from Egyptian Stock Market," Accounting and Finance Research, Sciedu Press, vol. 6(2), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    2. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    3. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    4. Shynkevich, Andrei, 2012. "Short-term predictability of equity returns along two style dimensions," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 675-685.
    5. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    6. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    7. Yang, Junmin & Cao, Zhiguang & Han, Qiheng & Wang, Qiyu, 2019. "Tactical asset allocation on technical trading rules and data snooping," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    8. Lu, Tsung-Hsun & Chen, Yi-Chi & Hsu, Yu-Chin, 2015. "Trend definition or holding strategy: What determines the profitability of candlestick charting?," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 172-183.
    9. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    10. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    11. Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability Of Technical Trading Rules In Us Futures Markets: A Data Snooping Free Test," 2004 Conference, April 19-20, 2004, St. Louis, Missouri 19011, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    12. Paskalis Glabadanidis, 2017. "Timing the Market with a Combination of Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 353-394, September.
    13. Chiang, Mi-Hsiu & Chiu, Hsin-Yu & Kuo, Wei-Yu, 2021. "Predictive ability of similarity-based futures trading strategies," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    14. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    15. Kevin Rink, 2023. "The predictive ability of technical trading rules: an empirical analysis of developed and emerging equity markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 403-456, December.
    16. Shynkevich, Andrei, 2016. "Predictability in bond returns using technical trading rules," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 55-69.
    17. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    18. Nomikos, Nikos K. & Doctor, Kaizad, 2013. "Economic significance of market timing rules in the Forward Freight Agreement markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 77-93.
    19. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    20. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.

    More about this item

    Keywords

    Technical trading ; Moving average ; Forecasting ; Leverage ; Market timing;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fri:fribow:fribow00421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mustapha Obbad (email available below). General contact details of provider: https://edirc.repec.org/data/wsffrch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.