IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v19y2012i5p675-685.html
   My bibliography  Save this article

Short-term predictability of equity returns along two style dimensions

Author

Listed:
  • Shynkevich, Andrei

Abstract

This study uses daily return data on 20 portfolios split along two dimensions, growth/value and market size, over the period of four decades and employs over 12,000 trading rules to investigate the short-term predictability of portfolio returns. It shows that, historically, portfolios of small stocks and value stocks have been more suitable for active trading strategies since returns on value portfolios exhibit more predictability than returns on growth portfolios and returns on portfolios of large stocks appear to be less predictive than returns on portfolios of small stocks. The predictive ability of trading rules is all but gone during the 2000s. Popularization of exchange-traded funds and the introduction of quote decimalization on the exchanges are the most likely reasons behind the lack of predictability.

Suggested Citation

  • Shynkevich, Andrei, 2012. "Short-term predictability of equity returns along two style dimensions," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 675-685.
  • Handle: RePEc:eee:empfin:v:19:y:2012:i:5:p:675-685
    DOI: 10.1016/j.jempfin.2012.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539812000576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2012.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth R. French, 2008. "Presidential Address: The Cost of Active Investing," Journal of Finance, American Finance Association, vol. 63(4), pages 1537-1573, August.
    2. Lakonishok, Josef & Shleifer, Andrei & Vishny, Robert W, 1994. "Contrarian Investment, Extrapolation, and Risk," Journal of Finance, American Finance Association, vol. 49(5), pages 1541-1578, December.
    3. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    4. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    5. Nijman, Theo & Swinkels, Laurens & Verbeek, Marno, 2004. "Do countries or industries explain momentum in Europe?," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 461-481, September.
    6. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    7. Chow, K. Victor & Denning, Karen C., 1993. "A simple multiple variance ratio test," Journal of Econometrics, Elsevier, vol. 58(3), pages 385-401, August.
    8. Stoll, Hans R. & Whaley, Robert E., 1983. "Transaction costs and the small firm effect," Journal of Financial Economics, Elsevier, vol. 12(1), pages 57-79, June.
    9. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    10. John M. Griffin & Michael L. Lemmon, 2002. "Book‐to‐Market Equity, Distress Risk, and Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2317-2336, October.
    11. Lu Zhang, 2005. "The Value Premium," Journal of Finance, American Finance Association, vol. 60(1), pages 67-103, February.
    12. Rytchkov, Oleg, 2010. "Expected returns on value, growth, and HML," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 552-565, September.
    13. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    14. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    15. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    16. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    17. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    18. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2003. "Forecast evaluation with shared data sets," International Journal of Forecasting, Elsevier, vol. 19(2), pages 217-227.
    19. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    20. Hegde, Shantaram P. & McDermott, John B., 2004. "The market liquidity of DIAMONDS, Q's, and their underlying stocks," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1043-1067, May.
    21. Kim, Jae H., 2006. "Wild bootstrapping variance ratio tests," Economics Letters, Elsevier, vol. 92(1), pages 38-43, July.
    22. Chung, Kee H. & Chuwonganant, Chairat & McCormick, D. Timothy, 2004. "Order preferencing and market quality on NASDAQ before and after decimalization," Journal of Financial Economics, Elsevier, vol. 71(3), pages 581-612, March.
    23. Hans R. Stoll, 2006. "Electronic Trading in Stock Markets," Journal of Economic Perspectives, American Economic Association, vol. 20(1), pages 153-174, Winter.
    24. Knez, Peter J & Ready, Mark J, 1997. "On the Robustness of Size and Book-to-Market in Cross-Sectional Regressions," Journal of Finance, American Finance Association, vol. 52(4), pages 1355-1382, September.
    25. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    26. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    27. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    28. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    29. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    30. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    31. Sugato Chakravarty & Robert A. Wood & Robert A. Van Ness, 2004. "Decimals And Liquidity: A Study Of The Nyse," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 27(1), pages 75-94, March.
    32. Po-Hsuan Hsu & Chung-Ming Kuan, 2005. "Reexamining the Profitability of Technical Analysis with Data Snooping Checks," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 606-628.
    33. Bokhari, Jawaad & Cai, Charlie & Hudson, Robert & Keasey, Kevin, 2005. "The predictive ability and profitability of technical trading rules: does company size matter?," Economics Letters, Elsevier, vol. 86(1), pages 21-27, January.
    34. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    35. Fama, Eugene F & French, Kenneth R, 1995. "Size and Book-to-Market Factors in Earnings and Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 131-155, March.
    36. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Can commodity futures be profitably traded with quantitative market timing strategies?," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1810-1819, September.
    37. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    38. Bessembinder, Hendrik, 2003. "Trade Execution Costs and Market Quality after Decimalization," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(4), pages 747-777, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coakley, Jerry & Marzano, Michele & Nankervis, John, 2016. "How profitable are FX technical trading rules?," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 273-282.
    2. Zarrabi, Nima & Snaith, Stuart & Coakley, Jerry, 2017. "FX technical trading rules can be profitable sometimes!," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 113-127.
    3. José A. Roldán-Casas & Mª B. García-Moreno García, 2022. "A procedure for testing the hypothesis of weak efficiency in financial markets: a Monte Carlo simulation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1289-1327, December.
    4. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    5. Hudson, Robert & McGroarty, Frank & Urquhart, Andrew, 2017. "Sampling frequency and the performance of different types of technical trading rules," Finance Research Letters, Elsevier, vol. 22(C), pages 136-139.
    6. Fong, Tom Pak Wing & Wu, Shui Tang, 2020. "Predictability in sovereign bond returns using technical trading rules: Do developed and emerging markets differ?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    7. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," Estudios Gerenciales, Universidad Icesi, November.
    8. Juan Benjamín Duarte Duarte & Juan Manuel Mascareñas Pérez-Iñigo, 2014. "¿Han sido los mercados bursátiles eficientes informacionalmente?," Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, June.
    9. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    2. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    3. Andrei Shynkevich, 2021. "Impact of bitcoin futures on the informational efficiency of bitcoin spot market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 115-134, January.
    4. Isakov, Dusan & Marti, Didier, 2011. "Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability," FSES Working Papers 421, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    5. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    6. Shynkevich, Andrei, 2016. "Predictability in bond returns using technical trading rules," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 55-69.
    7. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    8. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    9. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    10. Fong, Tom Pak Wing & Wu, Shui Tang, 2020. "Predictability in sovereign bond returns using technical trading rules: Do developed and emerging markets differ?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    11. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    12. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    13. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    14. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    15. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    16. Xiaoye Jin, 2022. "Evaluating the predictive power of intraday technical trading in China's crude oil market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1416-1432, November.
    17. Zarrabi, Nima & Snaith, Stuart & Coakley, Jerry, 2017. "FX technical trading rules can be profitable sometimes!," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 113-127.
    18. Jying‐Nan Wang & Hung‐Chun Liu & Jiangze Du & Yuan‐Teng Hsu, 2019. "Economic benefits of technical analysis in portfolio management: Evidence from global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 890-902, April.
    19. Nomikos, Nikos K. & Doctor, Kaizad, 2013. "Economic significance of market timing rules in the Forward Freight Agreement markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 77-93.
    20. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.

    More about this item

    Keywords

    Return predictability; Trading rule; Data snooping;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:19:y:2012:i:5:p:675-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.