IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency

  • Shynkevich, Andrei
Registered author(s):

    Existing studies on time-series predictability in equity returns base their analysis on the usage of a broad market index or individual stocks showing that trend chasing trading rules have largely been futile. This paper shows that trend continuation is predominantly an intra-industry rather than a market-wide or a single-company effect. After adjusting for data snooping bias, trend chasing trading rules achieve superior predictability for a number of sectors and industries in the 1990s. A simultaneous application of trading rules to each sector or industry individually yields superior predictability on the aggregate market level in the 1990s implying that time-series momentum can also be experienced as an inter-industry effect, i.e., momentum can travel across industries reflecting the phenomenon of sector rotation. Sector and industry portfolios exhibit no predictability in their returns in the 2000s due to a persistent negative autocorrelation in their return series. A sharp and sustained rise in correlations between sectors and industries observed since the early 2000s makes it difficult for actively managed trading strategies to outperform the passive benchmarks.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0148619513000507
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Economics and Business.

    Volume (Year): 69 (2013)
    Issue (Month): C ()
    Pages: 64-85

    as
    in new window

    Handle: RePEc:eee:jebusi:v:69:y:2013:i:c:p:64-85
    Contact details of provider: Web page: http://www.elsevier.com/locate/jeconbus

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Sullivan, Ryan & Timmermann, Allan G & White, Halbert, 2001. "Forecast Evaluation with Shared Data Sets," CEPR Discussion Papers 3060, C.E.P.R. Discussion Papers.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Lo, Andrew W. (Andrew Wen-Chuan) & MacKinlay, Archie Craig, 1955-., 1989. "When are contrarian profits due to stock market overreaction?," Working papers 3008-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Can commodity futures be profitably traded with quantitative market timing strategies?," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1810-1819, September.
    5. François Longin, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, 04.
    6. Andrew W. Lo & A. Craig MacKinlay, 1988. "The Size and Power of the Variance Ratio Test in Finite Samples: A Monte Carlo Investigation," NBER Technical Working Papers 0066, National Bureau of Economic Research, Inc.
    7. Andrew W. Lo & A. Craig MacKinlay, 1987. "Stock Market Prices Do Not Follow Random Walks: Evidence From a Simple Specification Test," NBER Working Papers 2168, National Bureau of Economic Research, Inc.
    8. Tobias J. Moskowitz & Mark Grinblatt, 1999. "Do Industries Explain Momentum?," Journal of Finance, American Finance Association, vol. 54(4), pages 1249-1290, 08.
    9. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    10. Malkiel, Burton & Campbell, John & Lettau, Martin & Xu, Yexiao, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Scholarly Articles 3128707, Harvard University Department of Economics.
    11. Hegde, Shantaram P. & McDermott, John B., 2004. "The market liquidity of DIAMONDS, Q's, and their underlying stocks," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1043-1067, May.
    12. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    13. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data-Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    14. Menkhoff, Lukas, 2010. "The Use of Technical Analysis by Fund Managers: International Evidence," Hannover Economic Papers (HEP) dp-446, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    15. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-64, December.
    16. Venkat R. Eleswarapu & Ashish Tiwari, 1996. "Business Cycles And Stock Market Returns: Evidence Using Industry-Based Portfolios," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(1), pages 121-134, 03.
    17. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    18. Kwon, Ki-Yeol & Kish, Richard J., 2002. "A comparative study of technical trading strategies and return predictability: an extension of Brock, Lakonishok, and LeBaron (1992) using NYSE and NASDAQ indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 611-631.
    19. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    20. Kewei Hou, 2007. "Industry Information Diffusion and the Lead-lag Effect in Stock Returns," Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1113-1138.
    21. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
    22. Marshall, Ben R. & Young, Martin R. & Rose, Lawrence C., 2006. "Candlestick technical trading strategies: Can they create value for investors?," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2303-2323, August.
    23. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(03), pages 285-300, September.
    24. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    25. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    26. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    27. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    28. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    29. Po-Hsuan Hsu & Chung-Ming Kuan, 2005. "Reexamining the Profitability of Technical Analysis with Data Snooping Checks," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 606-628.
    30. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    31. Pan, Ming-Shiun & Liano, Kartono & Huang, Gow-Cheng, 2004. "Industry momentum strategies and autocorrelations in stock returns," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 185-202, March.
    32. Narasimhan Jegadeesh, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, 04.
    33. Day, Theodore E. & Wang, Pingying, 2002. "Dividends, nonsynchronous prices, and the returns from trading the Dow Jones Industrial Average," Journal of Empirical Finance, Elsevier, vol. 9(4), pages 431-454, November.
    34. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. " Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    35. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
    36. Stephen Taylor, 2000. "Stock index and price dynamics in the UK and the US: new evidence from a trading rule and statistical analysis," The European Journal of Finance, Taylor & Francis Journals, vol. 6(1), pages 39-69.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jebusi:v:69:y:2013:i:c:p:64-85. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.