IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v12y2002i9p639-653.html
   My bibliography  Save this article

Technical trading strategies and return predictability: NYSE

Author

Listed:
  • Ki-Yeol Kwon
  • Richard Kish

Abstract

This study consists of an empirical analysis on technical trading rules (the simple price moving average, the momentum, and trading volume) utilizing the NYSE value-weighted index over the period 1962-1996, as well as, three subperiods. The methodologies employed include the traditional t-test and residual bootstrap methodology utilizing random walk, GARCH-M and GARCH-M with some instrument variables. The results indicate that the technical trading rules add a value to capture profit opportunities over a buy-hold strategy. When the trading rules are applied to the different sub-samples, the results are weaker in the last sub-period, 1985-1996. This may imply that the market is getting efficient in information over the recent years because of technological improvements.

Suggested Citation

  • Ki-Yeol Kwon & Richard Kish, 2002. "Technical trading strategies and return predictability: NYSE," Applied Financial Economics, Taylor & Francis Journals, vol. 12(9), pages 639-653.
  • Handle: RePEc:taf:apfiec:v:12:y:2002:i:9:p:639-653
    DOI: 10.1080/09603100010016139
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603100010016139
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blake LeBaron, "undated". "Technical Trading Rules and Regime Shifts in Foreign Exchange," Working papers _007, University of Wisconsin - Madison.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros E. Milionis & Evangelia Papanagiotou, 2013. "Decomposing the predictive performance of the moving average trading rule of technical analysis: the contribution of linear and non-linear dependencies in stock returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(11), pages 2480-2494, November.
    2. Didenko Alexander & Demicheva Svetlana, 2013. "Application of Ensemble Learning for views generation in Meucci portfolio optimization framework," Review of Business and Economics Studies, CyberLeninka;Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет), issue 1, pages 100-110.
    3. Georgi Nalbantov & Rob Bauer & Ida Sprinkhuizen-Kuyper, 2006. "Equity style timing using support vector regressions," Applied Financial Economics, Taylor & Francis Journals, vol. 16(15), pages 1095-1111.
    4. Alexandros E. Milionis & Evangelia Papanagiotou, 2008. "A Note on the Use of Moving Average Trading Rules to Test For Weak from Efficiency in Capital Markets," Working Papers 91, Bank of Greece.
    5. Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 7(1), pages 1-12, February.
    6. Laura Nuñez, 2004. "Do Moving Average Rules Make Profits? A Study Using The Madrid Stock Market," Working Papers Economia wp04-03, Instituto de Empresa, Area of Economic Environment.
    7. Metghalchi, Massoud & Chen, Chien-Ping & Hayes, Linda A., 2015. "History of share prices and market efficiency of the Madrid general stock index," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 178-184.
    8. Schulmeister, Stephan, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
    9. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
    10. Lubnau, Thorben & Todorova, Neda, 2015. "Trading on mean-reversion in energy futures markets," Energy Economics, Elsevier, vol. 51(C), pages 312-319.
    11. Lubnau, Thorben, 2014. "Spread trading strategies in the crude oil futures market," Discussion Papers 353, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    12. Stephan Schulmeister, 2007. "The Interaction Between the Aggregate Behaviour of Technical Trading Systems and Stock Price Dynamics," WIFO Working Papers 290, WIFO.
    13. repec:eee:reveco:v:53:y:2018:i:c:p:168-184 is not listed on IDEAS
    14. Yung-Ho Chang & Massoud Metghalchi & Chia-Chung Chan, 2006. "Technical trading strategies and cross-national information linkage: the case of Taiwan stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 731-743.
    15. Metghalchi, Massoud & Chang, Yung-Ho & Marcucci, Juri, 2008. "Is the Swedish stock market efficient? Evidence from some simple trading rules," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 475-490, June.
    16. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
    17. Gerritsen, Dirk F., 2016. "Are chartists artists? The determinants and profitability of recommendations based on technical analysis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 179-196.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:12:y:2002:i:9:p:639-653. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.