IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Exact and approximate stepdown methods for multiple hypothesis testing

Listed author(s):
  • Joseph Romano
  • Michael Wolf

Consider the problem of testing k hypotheses simultaneously. In this paper, we discuss finite and large sample theory of stepdown methods that provide control of the familywise error rate (FWE). In order to improve upon the Bonferroni method or Holm's (1979) stepdown method, Westfall and Young (1993) make e ective use of resampling to construct stepdown methods that implicitly estimate the dependence structure of the test statistics. However, their methods depend on an assumption called subset pivotality. The goal of this paper is to construct general stepdown methods that do not require such an assumption. In order to accomplish this, we take a close look at what makes stepdown procedures work, and a key component is a monotonicity requirement of critical values. By imposing such monotonicity on estimated critical values (which is not an assumption on the model but an assumption on the method), it is demonstrated that the problem of constructing a valid multiple test procedure which controls the FWE can be reduced to the problem of contructing a single test which controls the usual probability of a Type 1 error. This reduction allows us to draw upon an enormous resampling literature as a general means of test contruction.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Whole Paper
Download Restriction: no

Paper provided by Department of Economics and Business, Universitat Pompeu Fabra in its series Economics Working Papers with number 727.

in new window

Date of creation: Dec 2003
Handle: RePEc:upf:upfgen:727
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
  2. G. Hommel, 1986. "Multiple test procedures for arbitrary dependence structures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 33(1), pages 321-336, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:727. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.