IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/14-13.html
   My bibliography  Save this paper

Maximum score estimation of preference parameters for a binary choice model under uncertainty

Author

Listed:
  • Le-Yu Chen

    () (Institute for Fiscal Studies and Academia Sinica)

  • Sokbae Lee

    () (Institute for Fiscal Studies and Columbia University and IFS)

  • Myung Jae Sung

    (Institute for Fiscal Studies)

Abstract

This paper develops maximum score estimation of preference parameters in the binary choice model under uncertainty in which the decision rule is affected by conditional expectations. The preference parameters are estimated in two stages: we estimate conditional expectations nonparametrically in the first stage and the preference parameters in the second stage based on Manski (1975, 1985)'s maximum score estimator using the choice data and first stage estimates. The paper establishes consistency and derives the rate of convergence of the corresponding two-stage estimator, which is of independent interest for maximum score estimation with generated regressors. The paper also provides results of some Monte Carlo experiments.

Suggested Citation

  • Le-Yu Chen & Sokbae Lee & Myung Jae Sung, 2013. "Maximum score estimation of preference parameters for a binary choice model under uncertainty," CeMMAP working papers CWP14/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:14/13
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp141313.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(05), pages 1140-1177, October.
    2. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    3. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    4. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    5. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    6. Juan Carlos Escanciano & David Jacho‐Chávez & Arthur Lewbel, 2016. "Identification and estimation of semiparametric two‐step models," Quantitative Economics, Econometric Society, vol. 7(2), pages 561-589, July.
    7. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    8. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
    9. Ahn, Hyungtaik, 1995. "Nonparametric two-stage estimation of conditional choice probabilities in a binary choice model under uncertainty," Journal of Econometrics, Elsevier, vol. 67(2), pages 337-378, June.
    10. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    11. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn, 2012. "A Practical Asymptotic Variance Estimator for Two-Step Semiparametric Estimators," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 481-498, May.
    12. repec:hal:journl:peer-00741628 is not listed on IDEAS
    13. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    14. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, July.
    15. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    16. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    17. Ahn, Hyungtaik & Manski, Charles F., 1993. "Distribution theory for the analysis of binary choice under uncertainty with nonparametric estimation of expectations," Journal of Econometrics, Elsevier, vol. 56(3), pages 291-321, April.
    18. Brown, Bryan W & Walker, Mary Beth, 1989. "The Random Utility Hypothesis and Inference in Demand Systems," Econometrica, Econometric Society, vol. 57(4), pages 815-829, July.
    19. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    20. Ahn, Hyungtaik, 1997. "Semiparametric Estimation of a Single-Index Model with Nonparametrically Generated Regressors," Econometric Theory, Cambridge University Press, vol. 13(01), pages 3-31, February.
    21. Manski, Charles F., 1993. "Dynamic choice in social settings : Learning from the experiences of others," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 121-136, July.
    22. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    discrete choice; maximum score estimation; generated regressor; preference parameters; M-estimation; cube root asymptotics;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:14/13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.