IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v100y2005p94-108.html
   My bibliography  Save this article

Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing

Author

Listed:
  • Joseph P. Romano
  • Michael Wolf

Abstract

Consider the problem of testing k hypotheses simultaneously. In this paper, we discuss finite and large sample theory of stepdown methods that provide control of the familywise error rate (FWE). In order to improve upon the Bonferroni method or Holm's (1979) stepdown method, Westfall and Young (1993) make e ective use of resampling to construct stepdown methods that implicitly estimate the dependence structure of the test statistics. However, their methods depend on an assumption called subset pivotality. The goal of this paper is to construct general stepdown methods that do not require such an assumption. In order to accomplish this, we take a close look at what makes stepdown procedures work, and a key component is a monotonicity requirement of critical values. By imposing such monotonicity on estimated critical values (which is not an assumption on the model but an assumption on the method), it is demonstrated that the problem of constructing a valid multiple test procedure which controls the FWE can be reduced to the problem of contructing a single test which controls the usual probability of a Type 1 error. This reduction allows us to draw upon an enormous resampling literature as a general means of test contruction.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
  • Handle: RePEc:bes:jnlasa:v:100:y:2005:p:94-108
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2005/00000100/00000469/art00015
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    2. G. Hommel, 1986. "Multiple test procedures for arbitrary dependence structures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 33(1), pages 321-336, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:100:y:2005:p:94-108. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.