IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v100y2005p94-108.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing

Author

Listed:
  • Joseph P. Romano
  • Michael Wolf

Abstract

Consider the problem of testing k hypotheses simultaneously. In this paper, we discuss finite and large sample theory of stepdown methods that provide control of the familywise error rate (FWE). In order to improve upon the Bonferroni method or Holm's (1979) stepdown method, Westfall and Young (1993) make e ective use of resampling to construct stepdown methods that implicitly estimate the dependence structure of the test statistics. However, their methods depend on an assumption called subset pivotality. The goal of this paper is to construct general stepdown methods that do not require such an assumption. In order to accomplish this, we take a close look at what makes stepdown procedures work, and a key component is a monotonicity requirement of critical values. By imposing such monotonicity on estimated critical values (which is not an assumption on the model but an assumption on the method), it is demonstrated that the problem of constructing a valid multiple test procedure which controls the FWE can be reduced to the problem of contructing a single test which controls the usual probability of a Type 1 error. This reduction allows us to draw upon an enormous resampling literature as a general means of test contruction.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
  • Handle: RePEc:bes:jnlasa:v:100:y:2005:p:94-108
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2005/00000100/00000469/art00015
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    2. G. Hommel, 1986. "Multiple test procedures for arbitrary dependence structures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 33(1), pages 321-336, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    2. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    3. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    4. Ben R. Craig & Yiming Ma, 2020. "Intermediation in the Interbank Lending Market," Working Papers 20-09, Federal Reserve Bank of Cleveland.
    5. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    6. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    7. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    8. Alistair Wilson & Mariagiovanna Baccara & Ayse Imrohoroglu & Leeat Yariv, 2009. "A Field Study on Matching with Network Externalities," Working Paper 486, Department of Economics, University of Pittsburgh, revised Sep 2011.
    9. Debashis Ghosh & Moulinath Banerjee & Pinaki Biswas, 2004. "Binary isotonic regression procedures, with application to cancer biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1037, Berkeley Electronic Press.
    10. Jeremy T. Fox & Patrick Bajari, 2013. "Measuring the Efficiency of an FCC Spectrum Auction," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 100-146, February.
    11. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," ANU Working Papers in Economics and Econometrics 2020-671, Australian National University, College of Business and Economics, School of Economics.
    12. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    13. Chen, Jiawei & Song, Kejun, 2013. "Two-sided matching in the loan market," International Journal of Industrial Organization, Elsevier, vol. 31(2), pages 145-152.
    14. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    15. Lee, Sokbae & Seo, Myung Hwan, 2008. "Semiparametric estimation of a binary response model with a change-point due to a covariate threshold," Journal of Econometrics, Elsevier, vol. 144(2), pages 492-499, June.
    16. Le-Yu Chen & Sokbae (Simon) Lee & Myung Jae Sung, 2013. "Maximum score estimation of preference parameters for a binary choice model under uncertainty," CeMMAP working papers CWP14/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    18. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2019. "Have Econometric Analyses of Happiness Data Been Futile? A Simple Truth about Happiness Scales," IZA Discussion Papers 12152, Institute of Labor Economics (IZA).
    19. Le‐Yu Chen & Sokbae Lee & Myung Jae Sung, 2014. "Maximum score estimation with nonparametrically generated regressors," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 271-300, October.
    20. Matias D. Cattaneo & Michael Jansson & Kenichi Nagasawa, 2017. "Bootstrap-Based Inference for Cube Root Consistent Estimators," CREATES Research Papers 2017-18, Department of Economics and Business Economics, Aarhus University.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:100:y:2005:p:94-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.