IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Corridor implied volatility and the variance risk premium in the Italian market

  • Silvia Muzzioli

    ()

Corridor implied volatility introduced in Carr and Madan (1998) and recently implemented in Andersen and Bondarenko (2007) is obtained from model-free implied volatility by truncating the integration domain between two barriers. Corridor implied volatility is implicitly linked with the concept that the tails of the risk-neutral distribution are estimated with less precision than central values, due to the lack of liquid options for very high and very low strikes. However, there is no golden choice for the barriers levels’, which will probably change depending on the underlying asset risk neutral distribution. The latter feature renders its forecasting performance mainly an empirical question. The aim of the paper is twofold. First we investigate the forecasting performance of corridor implied volatility by choosing different corridors with symmetric and asymmetric cuts, and compare the results with the preliminary findings in Muzzioli (2010b). Second, we examine the nature of the variance risk premium and shed light on the information content of different parts of the risk neutral distribution of the stock price, by using a model-independent approach based on corridor measures. To this end we compute both realised and model-free variance measures which accounts for drops versus increases in the underlying asset price. The comparison is pursued by using intra-daily synchronous prices between the options and the underlying asset.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cefin.unimore.it/?q=webfm_send/157
Download Restriction: no

Paper provided by Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi" in its series Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) with number 11112.

as
in new window

Length: pages 36
Date of creation: Nov 2011
Date of revision:
Handle: RePEc:mod:wcefin:11112
Contact details of provider: Web page: http://www.economia.unimore.it

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrew J. Patton & Kevin Sheppard, 2008. "Evaluating Volatility and Correlation Forecasts," OFRC Working Papers Series 2008fe22, Oxford Financial Research Centre.
  2. Tim Bollerslev & Tzuo Hao & George Tauchen, 2008. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2008-48, School of Economics and Management, University of Aarhus.
  3. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  4. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
  5. Yacine Aït-Sahalia & Andrew W. Lo, . "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," CRSP working papers 332, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
  6. Silvia Muzzioli, 2008. "Option based forecasts of volatility: An empirical study in the DAX index options market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 08051, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
  7. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  8. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  9. Neil Shephard & Ole E. Barndorff-Nielsen, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Series Working Papers 2003-W18, University of Oxford, Department of Economics.
  10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  11. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  12. Andrew Ang & Joseph Chen & Yuhang Xing, 2006. "Downside Risk," Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1191-1239.
    • Andrew Ang & Joseph Chen & Yuhang Xing, 2005. "Downside risk," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
  13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  14. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  15. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  16. Moriggia, V. & Muzzioli, S. & Torricelli, C., 2009. "On the no-arbitrage condition in option implied trees," European Journal of Operational Research, Elsevier, vol. 193(1), pages 212-221, February.
  17. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  18. Mark Britten-Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, 04.
  19. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
  20. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mod:wcefin:11112. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giuseppe Marotta)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.