IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws141309.html
   My bibliography  Save this paper

The pairwise approach to model a large set of disaggregates with common trends

Author

Listed:
  • Carlomagno, Guillermo
  • Espasa, Antoni

Abstract

The objective of this paper is to model and forecast all the components of a macro orbusiness variable. Our contribution concerns cases with a large number (hundreds) ofcomponents where multivariate approaches are not feasible. We extend in several directions the pairwise approach originally proposed by Espasa and Mayo-Burgos(2013) and study its statistical properties. The pairwise approach consists on performing common features tests between the N(N-1)/2 pairs of series that exist in a group of N of them. Once this is done, groups of series that share common features can be formed. Next, all the components are forecast using single equation models that include the restrictions derived by the common features. In this paper we focus on discovering groups of components that share single common trends. The asymptotic properties of the procedure are studied analytically. Monte Carlo evidence on the small samples performance is provided and a small samples correction procedure designed. A comparison with a DFM alternative is also carried out, and results indicate that the pairwise approach dominates in many empirically relevant situations. A relevant advantage of the pairwise approach is that it does not need common features to be pervasive. A strategy for dealing with outliers and breaks in the context of the pairwise procedure is designed and its properties studied by Monte Carlo. Results indicate that the treatment of these observations may considerably improve the procedure's performance when series are 'contaminated'.

Suggested Citation

  • Carlomagno, Guillermo & Espasa, Antoni, 2014. "The pairwise approach to model a large set of disaggregates with common trends," DES - Working Papers. Statistics and Econometrics. WS ws141309, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws141309
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/18912/ws141309.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pierre Perron & Gabriel RodrÌguez, 2003. "Searching For Additive Outliers In Nonstationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 193-220, March.
    2. Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
    3. Hashem Pesaran, M., 2007. "A pair-wise approach to testing for output and growth convergence," Journal of Econometrics, Elsevier, vol. 138(1), pages 312-355, May.
    4. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-360, Oct.-Dec..
    5. Kirstin Hubrich & David F. Hendry, 2005. "Forecasting Aggregates by Disaggregates," Computing in Economics and Finance 2005 270, Society for Computational Economics.
    6. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    7. Jean Imbs & Haroon Mumtaz & Morten O. Ravn & Hélène Rey, 2005. "PPP Strikes Back: Aggregation And the Real Exchange Rate," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 1-43.
    8. Espasa, Antoni & Mayo-Burgos, Iván, 2013. "Forecasting aggregates and disaggregates with common features," International Journal of Forecasting, Elsevier, vol. 29(4), pages 718-732.
    9. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-384, March.
    10. Matteo Pelagatti & Bruno Bosco & Lucia Parisio & Fabio Baldi, 2007. "A Robust Multivariate Long Run Analysis of European Electricity Prices," Working Papers 2007.103, Fondazione Eni Enrico Mattei.
    11. Guenter W. Beck & Kirstin Hubrich & Massimiliano Marcellino, 2016. "On the Importance of Sectoral and Regional Shocks for Price‐Setting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1234-1253, November.
    12. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    13. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    14. Lutkepohl, Helmut & Saikkonen, Pentti & Trenkler, Carsten, 2003. "Comparison of tests for the cointegrating rank of a VAR process with a structural shift," Journal of Econometrics, Elsevier, vol. 113(2), pages 201-229, April.
    15. Doornik, Jurgen A & Hendry, David F & Nielsen, Bent, 1998. " Inference in Cointegrating Models: UK M1 Revisited," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 533-572, December.
    16. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    17. Nielsen, Bent & Rahbek, Anders, 2000. " Similarity Issues in Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 62(1), pages 5-22, February.
    18. Mark Bils & Peter J. Klenow, 2004. "Some Evidence on the Importance of Sticky Prices," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 947-985, October.
    19. Johansen, Soren, 1992. "Cointegration in partial systems and the efficiency of single-equation analysis," Journal of Econometrics, Elsevier, vol. 52(3), pages 389-402, June.
    20. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-478, October.
    21. Mojon, Benoît & Altissimo, Filippo & Zaffaroni, Paolo, 2007. "Fast micro and slow macro: can aggregation explain the persistence of inflation?," Working Paper Series 729, European Central Bank.
    22. Todd E. Clark, 2006. "Disaggregate evidence on the persistence of consumer price inflation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 563-587.
    23. repec:fgv:epgrbe:v:47:n:2:a:1 is not listed on IDEAS
    24. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    25. Saikkonen, Pentti & Lutkepohl, Helmut, 2000. "Testing for the Cointegrating Rank of a VAR Process with Structural Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 451-464, October.
    26. Franses, Philip Hans & Lucas, Andre, 1998. "Outlier Detection in Cointegration Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 459-468, October.
    27. Harbo, Ingrid, et al, 1998. "Asymptotic Inference on Cointegrating Rank in Partial Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 388-399, October.
    28. Søren Johansen & Rocco Mosconi & Bent Nielsen, 2000. "Cointegration analysis in the presence of structural breaks in the deterministic trend," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 216-249.
    29. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    30. Perron, Pierre & Vogelsang, Timothy J, 1992. "Nonstationarity and Level Shifts with an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 301-320, July.
    31. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    32. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    33. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    34. David Hendry, 1995. "On the interactions of unit roots and exogeneity," Economics Papers 7., Economics Group, Nuffield College, University of Oxford.
    35. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    36. Helmut Lütkepohl & Pentti Saikkonen & Carsten Trenkler, 2004. "Testing for the Cointegrating Rank of a VAR Process with Level Shift at Unknown Time," Econometrica, Econometric Society, vol. 72(2), pages 647-662, March.
    37. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    38. Antoni Espasa & Rebeca Albacete, 2007. "Econometric modelling for short-term inflation forecasting in the euro area," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 303-316.
    39. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    40. Søren Johansen & Rocco Mosconi & Bent Nielsen, 2000. "Cointegration analysis in the presence of structural breaks in the deterministic trend," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 216-249.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Outliers treatment;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws141309. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.