IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v24y2003i2p193-220.html
   My bibliography  Save this article

Searching For Additive Outliers In Nonstationary Time Series

Author

Listed:
  • Pierre Perron
  • Gabriel RodrÌguez

Abstract

Recently, Vogelsang (1999) proposed a method to detect outliers which explicitly imposes the null hypothesis of a unit root. It works in an iterative fashion to select multiple outlier in a given series. We show, via simulations, that, under the null hypothesis of no outliers, it has the right size in finite samples to detect a single outlier but, when applied in an iterative fashion to select multiple outliers, it exhibits severe size distortions towards finding an excessive number of outliers. We show that his iterative method is incorrect and derive the appropriate limiting distribution of the test at each step of the search. Whether corrected or not, we also show that the outliers need to be very large for the method to have any decent power. We propose an alternative method based on first-differenced data that has considerably more power. We also show that our method to identify outliers leads to unit root tests with more accurate finite sample size and robustness to departures from a unit root. The issues are illustrated using two US/Finland real-exchange rate series. Copyright 2003 Blackwell Publishing Ltd.

Suggested Citation

  • Pierre Perron & Gabriel RodrÌguez, 2003. "Searching For Additive Outliers In Nonstationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 193-220, March.
  • Handle: RePEc:bla:jtsera:v:24:y:2003:i:2:p:193-220
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=jtsa&volume=24&issue=2&year=2003&part=null
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rech, Gianluigi & Teräsvirta, Timo & Tschernig, Rolf, 1999. "A simple variable selection technique for nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 296, Stockholm School of Economics, revised 06 Apr 2000.
    2. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    3. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    4. Lundbergh, Stefan & Terasvirta, Timo & van Dijk, Dick, 2003. "Time-Varying Smooth Transition Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 104-121, January.
    5. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    6. Medeiros, Marcelo & Veiga, Alvaro, 2000. "A Flexible Coefficient Smooth Transition Time Series Model," SSE/EFI Working Paper Series in Economics and Finance 360, Stockholm School of Economics, revised 29 Apr 2004.
    7. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, pages 59-75.
    8. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    9. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:24:y:2003:i:2:p:193-220. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.