My bibliography
Save this item
Comparing and evaluating Bayesian predictive distributions of asset returns
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022.
"On the volatility of cryptocurrencies,"
Research in International Business and Finance, Elsevier, vol. 62(C).
- Thanasis Stengos & Theodore Panagiotidis & Georgios Papapanagiotou, 2022. "On the volatility of cryptocurrencies," Working Papers 2202, University of Guelph, Department of Economics and Finance.
- Huber, Florian, 2017.
"Structural breaks in Taylor rule based exchange rate models — Evidence from threshold time varying parameter models,"
Economics Letters, Elsevier, vol. 150(C), pages 48-52.
- Huber, Florian, 2017. "Structural breaks in Taylor rule based exchange rate models - Evidence from threshold time varying parameter models," Department of Economics Working Paper Series 244, WU Vienna University of Economics and Business.
- Florian Huber, 2017. "Structural breaks in Taylor rule based exchange rate models - Evidence from threshold time varying parameter models," Department of Economics Working Papers wuwp244, Vienna University of Economics and Business, Department of Economics.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019.
"Higher Moment Constraints for Predictive Density Combinations,"
Working Papers
BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
- Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2020. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2020-01, University of Sydney Business School, Discipline of Business Analytics.
- Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
- Antonello D’Agostino & Domenico Giannone & Michele Lenza & Michele Modugno, 2016.
"Nowcasting Business Cycles: A Bayesian Approach to Dynamic Heterogeneous Factor Models,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 569-594,
Emerald Group Publishing Limited.
- Antonello D'Agostino & Domenico Giannone & Michele Lenza & Michele Modugno, 2015. "Nowcasting Business Cycles: a Bayesian Approach to Dynamic Heterogeneous Factor Models," Finance and Economics Discussion Series 2015-66, Board of Governors of the Federal Reserve System (U.S.).
- Davide Pettenuzzo & Allan Timmermann, 2017.
"Forecasting Macroeconomic Variables Under Model Instability,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
- Timmermann, Allan & Pettenuzzo, Davide, 2016. "Forecasting Macroeconomic Variables under Model Instability," CEPR Discussion Papers 11355, C.E.P.R. Discussion Papers.
- Angela Abbate & Massimiliano Marcellino, 2017. "Macroeconomic activity and risk indicators: an unstable relationship," BAFFI CAREFIN Working Papers 1756, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Jia Liu & John M. Maheu & Yong Song, 2024.
"Identification and forecasting of bull and bear markets using multivariate returns,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
- Liu, Jia & Maheu, John M & Song, Yong, 2023. "Identification and Forecasting of Bull and Bear Markets using Multivariate Returns," MPRA Paper 119515, University Library of Munich, Germany.
- Niko Hauzenberger & Florian Huber, 2020.
"Model instability in predictive exchange rate regressions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Papers 1811.08818, arXiv.org, revised Dec 2018.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Paper Series 276, WU Vienna University of Economics and Business.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Papers wuwp276, Vienna University of Economics and Business, Department of Economics.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Working Papers in Economics 2018-8, University of Salzburg.
- Roberto Leon-Gonzalez & Fuyu Yang, 2017.
"Bayesian inference and forecasting in the stationary bilinear model,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 10327-10347, October.
- Roberto Leon-Gonzalez & Fuyu Yang, 2014. "Bayesian Inference and Forecasting in the Stationary Bilinear Model," University of East Anglia Applied and Financial Economics Working Paper Series 055, School of Economics, University of East Anglia, Norwich, UK..
- Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Florian Huber & Gregor Kastner & Martin Feldkircher, 2019.
"Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 621-640, August.
- Florian Huber & Gregor Kastner & Martin Feldkircher, 2016. "Should I stay or should I go? Bayesian inference in the threshold time varying parameter (TTVP) model," Department of Economics Working Papers wuwp235, Vienna University of Economics and Business, Department of Economics.
- Florian Huber & Gregor Kastner & Martin Feldkircher, 2016. "Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models," Papers 1607.04532, arXiv.org, revised Jul 2018.
- Huber, Florian & Kastner, Gregor & Feldkircher, Martin, 2018. "Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models," Working Papers in Economics 2018-5, University of Salzburg.
- Huber, Florian & Kastner, Gregor & Feldkircher, Martin, 2016. "Should I stay or should I go? Bayesian inference in the threshold time varying parameter (TTVP) model," Department of Economics Working Paper Series 235, WU Vienna University of Economics and Business.
- Laura Liu, 2018.
"Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective,"
Finance and Economics Discussion Series
2018-036, Board of Governors of the Federal Reserve System (U.S.).
- Laura Liu, 2020. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," CAEPR Working Papers 2020-003, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu, 2018. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," Papers 1805.04178, arXiv.org, revised Oct 2021.
- Shin, Minchul & Zhong, Molin, 2017.
"Does realized volatility help bond yield density prediction?,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 373-389.
- Minchul Shin & Molin Zhong, 2013. "Does realized volatility help bond yield density prediction?," PIER Working Paper Archive 13-064, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Minchul Shin & Molin Zhong, 2015. "Does Realized Volatility Help Bond Yield Density Prediction?," Finance and Economics Discussion Series 2015-115, Board of Governors of the Federal Reserve System (U.S.).
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Niko Hauzenberger & Florian Huber & Luca Onorante, 2021.
"Combining shrinkage and sparsity in conjugate vector autoregressive models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 304-327, April.
- Niko Hauzenberger & Florian Huber & Luca Onorante, 2020. "Combining Shrinkage and Sparsity in Conjugate Vector Autoregressive Models," Papers 2002.08760, arXiv.org, revised Aug 2020.
- Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
- Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
- Berg Tim Oliver, 2017.
"Forecast accuracy of a BVAR under alternative specifications of the zero lower bound,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-29, April.
- Tim Oliver Berg, 2015. "Forecast Accuracy of a BVAR under Alternative Specifications of the Zero Lower Bound," ifo Working Paper Series 203, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Gianni Amisano & John Geweke, 2017.
"Prediction Using Several Macroeconomic Models,"
The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 912-925, December.
- Amisano, Gianni & Geweke, John, 2013. "Prediction using several macroeconomic models," Working Paper Series 1537, European Central Bank.
- Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Bayesian compressed vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 2016_09, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103, Brandeis University, Department of Economics and International Business School.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2017. "Bayesian Compressed Vector Autoregressions," Working Paper series 17-32, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103R, Brandeis University, Department of Economics and International Business School, revised Apr 2016.
- Hernández, Juan R., 2020.
"Covered Interest Parity: A Stochastic Volatility Approach to Estimate the Neutral Band,"
MPRA Paper
100744, University Library of Munich, Germany.
- Hernández Juan R., 2020. "Covered Interest Parity: A Stochastic Volatility Approach to Estimate the Neutral Band," Working Papers 2020-02, Banco de México.
- Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020.
"The determinants of bank loan recovery rates in good times and bad – New evidence,"
Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad -- new evidence," Monash Econometrics and Business Statistics Working Papers 7/18, Monash University, Department of Econometrics and Business Statistics.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad - new evidence," Papers 1804.07022, arXiv.org.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2010.
"Combining predictive densities using Bayesian filtering with applications to US economics data,"
Working Paper
2010/29, Norges Bank.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Bayesian Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-003/4, Tinbergen Institute.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Combining predictive densities using Bayesian filtering with applications to US economic data," Working Papers 2012_16, Department of Economics, University of Venice "Ca' Foscari".
- Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019.
"Bond Return Predictability: Economic Value and Links to the Macroeconomy,"
Management Science, INFORMS, vol. 65(2), pages 508-540, February.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75R, Brandeis University, Department of Economics and International Business School, revised Jul 2016.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75, Brandeis University, Department of Economics and International Business School.
- Timmermann, Allan & Pettenuzzo, Davide & Gargano, Antonio, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," CEPR Discussion Papers 10104, C.E.P.R. Discussion Papers.
- Follett, Lendie & Yu, Cindy, 2019. "Achieving parsimony in Bayesian vector autoregressions with the horseshoe prior," Econometrics and Statistics, Elsevier, vol. 11(C), pages 130-144.
- Lennart F. Hoogerheide & David Ardia & Nienke Corre, 2011.
"Stock Index Returns' Density Prediction using GARCH Models: Frequentist or Bayesian Estimation?,"
Tinbergen Institute Discussion Papers
11-020/4, Tinbergen Institute.
- Ardia, David & Lennart, Hoogerheide & Nienke, Corré, 2011. "Stock index returns’ density prediction using GARCH models: Frequentist or Bayesian estimation?," MPRA Paper 28259, University Library of Munich, Germany.
- Çakmaklı, Cem & Paap, Richard & van Dijk, Dick, 2013.
"Measuring and predicting heterogeneous recessions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2195-2216.
- Cem Cakmakli & Richard Paap & Dick van Dijk, 2011. "Measuring and Predicting Heterogeneous Recessions," Tinbergen Institute Discussion Papers 11-154/4, Tinbergen Institute, revised 15 Nov 2011.
- Cem Cakmakli & Richard Paap & Dick van Dijk, 2012. "Measuring and Predicting Heterogeneous Recessions," Koç University-TUSIAD Economic Research Forum Working Papers 1206, Koc University-TUSIAD Economic Research Forum.
- P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015.
"Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty,"
SIRE Discussion Papers
2015-71, Scottish Institute for Research in Economics (SIRE).
- Byrne, JP & Cao, S & Korobilis, D, 2016. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," Essex Finance Centre Working Papers 18195, University of Essex, Essex Business School.
- Joseph P. Byrne & Shuo Cao. & Dimitris Korobilis., 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," Working Papers 2015_08, Business School - Economics, University of Glasgow.
- Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," MPRA Paper 63844, University Library of Munich, Germany.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2014.
"Constructing Optimal Density Forecasts From Point Forecast Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
- Luiz Renato Regis de Oliveira Lima & Wagner Piazza Gaglianone, 2012. "Constructing Optimal Density Forecasts from Point Forecast Combinations," Série Textos para Discussão (Working Papers) 5, Programa de Pós-Graduação em Economia - PPGE, Universidade Federal da Paraíba.
- Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017.
"Forecasting Global Equity Indices Using Large Bayesian Vars,"
Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
- Florian Huber & Tamas Krisztin & Philipp Piribauer, 2014. "Forecasting Global Equity Indices using Large Bayesian VARs," Department of Economics Working Papers wuwp184, Vienna University of Economics and Business, Department of Economics.
- Huber, Florian & Krisztin, Tamás & Piribauer, Philipp, 2014. "Forecasting Global Equity Indices Using Large Bayesian VARs," Department of Economics Working Paper Series 184, WU Vienna University of Economics and Business.
- Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012.
"Probabilistic forecasts of volatility and its risk premia,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
- Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes & Simone Grose, 2010. "Probabilistic Forecasts of Volatility and its Risk Premia," Monash Econometrics and Business Statistics Working Papers 22/10, Monash University, Department of Econometrics and Business Statistics.
- Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
- Kastner, Gregor, 2019.
"Sparse Bayesian time-varying covariance estimation in many dimensions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
- Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468, arXiv.org, revised Nov 2017.
- Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2021.
"No‐arbitrage priors, drifting volatilities, and the term structure of interest rates,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 495-516, August.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2014. "No Arbitrage Priors, Drifting Volatilities, and the Term Structure of Interest Rates," CEPR Discussion Papers 9848, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "No-Arbitrage Priors, Drifting Volatilities, and the Term Structure of Interest Rates," Working Papers 20-27, Federal Reserve Bank of Cleveland.
- Petre Caraiani, 2014. "Do money and financial variables help forecasting output in emerging European Economies?," Empirical Economics, Springer, vol. 46(2), pages 743-763, March.
- Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020.
"Comparing the forecasting performances of linear models for electricity prices with high RES penetration,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Papers 1801.01093, arXiv.org, revised Nov 2019.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Working Papers No 2/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
- Angelos Alexopoulos & Petros Dellaportas & Omiros Papaspiliopoulos, 2019. "Bayesian prediction of jumps in large panels of time series data," Papers 1904.05312, arXiv.org, revised Apr 2021.
- Roberto Leon-Gonzalez & Blessings Majoni, 2024.
"Approximate Factor Models with a Common Multiplicative Factor for Stochastic Volatility,"
Working Paper series
24-04, Rimini Centre for Economic Analysis.
- Roberto Leon-Gonzalez & Blessings Majon, 2024. "Approximate Factor Models with a Common Multiplicative Factor for Stochastic Volatility," GRIPS Discussion Papers 24-02, National Graduate Institute for Policy Studies.
- Tallman, Ellis W. & Zaman, Saeed, 2017.
"Forecasting inflation: Phillips curve effects on services price measures,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
- Ellis W. Tallman & Saeed Zaman, 2015. "Forecasting Inflation: Phillips Curve Effects on Services Price Measures," Working Papers (Old Series) 1519, Federal Reserve Bank of Cleveland.
- Florian Huber & Tam'as Krisztin & Michael Pfarrhofer, 2018. "A Bayesian panel VAR model to analyze the impact of climate change on high-income economies," Papers 1804.01554, arXiv.org, revised Feb 2021.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Adaptive hierarchical priors for high-dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 241-271.
- Dimitris Korobilis & Davide Pettenuzzo, 2017. "Adaptive Hierarchical Priors for High-Dimensional Vector Autoregessions," Working Papers 115, Brandeis University, Department of Economics and International Business School.
- Dimitris Korobilis & Davide Pettenuzzo, 2018. "Adaptive Hierarchical Priors for High-Dimensional Vector Autoregressions," Working Paper series 18-21, Rimini Centre for Economic Analysis.
- Boriss Siliverstovs, 2021. "New York FED Staff Nowcasts and Reality: What Can We Learn about the Future, the Present, and the Past?," Econometrics, MDPI, vol. 9(1), pages 1-25, March.
- Kastner, Gregor, 2016.
"Dealing with Stochastic Volatility in Time Series Using the R Package stochvol,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
- Gregor Kastner, 2019. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Papers 1906.12134, arXiv.org.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018.
"Bayesian Nonparametric Calibration and Combination of Predictive Distributions,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
- Roberto Casarin & Federico Bassetti & Francesco Ravazzolo, 2015. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Working Papers 2015:04, Department of Economics, University of Venice "Ca' Foscari".
- Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2019. "Forecasting daily electricity prices with monthly macroeconomic variables," Working Paper Series 2250, European Central Bank.
- Yong Tan & Mike G. Tsionas, 2022. "Modelling sustainability efficiency in banking," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3754-3772, July.
- repec:wrk:wrkemf:06 is not listed on IDEAS
- Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
- Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- repec:ctc:serie1:def10 is not listed on IDEAS
- Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020.
"Partially censored posterior for robust and efficient risk evaluation,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman K. van Dijk, 2019. "Partially Censored Posterior for robust and efficient risk evaluation," Working Paper 2019/12, Norges Bank.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman van Dijk, 2019. "Partially Censored Posterior for Robust and Efficient Risk Evaluation," Tinbergen Institute Discussion Papers 19-057/III, Tinbergen Institute.
- Anna Kormilitsina & Sarah Zubairy, 2018.
"Propagation Mechanisms for Government Spending Shocks: A Bayesian Comparison,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1571-1616, October.
- Anna Kormilitsina & Sarah Zubairy, 2015. "Propagation Mechanisms for Government Spending Shocks: A Bayesian Comparison," EcoMod2015 8646, EcoMod.
- Anna Kormilitsina & Sarah Zubairy, 2016. "Propagation Mechanisms for Government Spending Shocks: A Bayesian Comparison," Departmental Working Papers 1608, Southern Methodist University, Department of Economics.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Bobeica, Elena & Hartwig, Benny, 2023. "The COVID-19 shock and challenges for inflation modelling," International Journal of Forecasting, Elsevier, vol. 39(1), pages 519-539.
- Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015.
"Generalised density forecast combinations,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
- N. Fawcett & G. Kapetanios & J. Mitchell & S. Price, 2014. "Generalised Density Forecast Combinations," CAMA Working Papers 2014-24, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Fawcett, Nicholas & Kapetanios, George & Mitchell, James & Price, Simon, 2014. "Generalised density forecast combinations," Bank of England working papers 492, Bank of England.
- Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
- Jochen Krause & Marc S. Paolella, 2014. "A Fast, Accurate Method for Value-at-Risk and Expected Shortfall," Econometrics, MDPI, vol. 2(2), pages 1-25, June.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
- Jensen, Mark J. & Maheu, John M., 2014.
"Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture,"
Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
- Mark J. Jensen & John M. Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Paper series 45_12, Rimini Centre for Economic Analysis.
- Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2012. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," FRB Atlanta Working Paper 2012-06, Federal Reserve Bank of Atlanta.
- Damian Stelmasiak & Grzegorz Szafrański, 2016. "Forecasting the Polish Inflation Using Bayesian VAR Models with Seasonality," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 21-42, March.
- Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
- Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
- Markku Lanne & Jani Luoto, 2016.
"Noncausal Bayesian Vector Autoregression,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1392-1406, November.
- Markku Lanne & Jani Luoto, 2014. "Noncausal Bayesian Vector Autoregression," CREATES Research Papers 2014-07, Department of Economics and Business Economics, Aarhus University.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018.
"On The Sources Of Uncertainty In Exchange Rate Predictability,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
- Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," SIRE Discussion Papers 2015-24, Scottish Institute for Research in Economics (SIRE).
- Byrne, Joseph P & Korobilis, Dimitris & Ribeiro, Pinho J, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," MPRA Paper 58956, University Library of Munich, Germany.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," Working Papers 2014_16, Business School - Economics, University of Glasgow.
- Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023.
"Vector autoregression models with skewness and heavy tails,"
Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
- Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2021. "Vector autoregression models with skewness and heavy tails," Working Papers 2021:8, Örebro University, School of Business.
- Sune Karlsson & Stepan Mazur & Hoang Nguyen, 2021. "Vector autoregression models with skewness and heavy tails," Papers 2105.11182, arXiv.org.
- Paul J. Northrop & Nicolas Attalides & Philip Jonathan, 2017. "Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 93-120, January.
- Haroon Mumtaz & Laura Sunder‐Plassmann, 2021.
"Nonlinear effects of government spending shocks in the USA: Evidence from state‐level data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 86-97, January.
- Haroon Mumtaz & Laura Sunder-Plassmann, 2017. "Non-linear effects of government spending shocks in the US. Evidence from state-level data," Working Papers 841, Queen Mary University of London, School of Economics and Finance.
- Nalan Baştürk & Cem Çakmakli & S. Pinar Ceyhan & Herman K. Van Dijk, 2014.
"Posterior‐Predictive Evidence On Us Inflation Using Extended New Keynesian Phillips Curve Models With Non‐Filtered Data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1164-1182, November.
- Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Extended New Keynesian Phillips Curve Models with Non-filtered Data," Tinbergen Institute Discussion Papers 13-090/III, Tinbergen Institute.
- Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021.
"Stochastic model specification in Markov switching vector error correction models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
- Huber, Florian & Pfarrhofer, Michael & Zörner, Thomas O., 2018. "Stochastic model specification in Markov switching vector error correction models," Working Papers in Economics 2018-3, University of Salzburg.
- Niko Hauzenberger & Florian Huber & Michael Pfarrhofer & Thomas O. Zorner, 2018. "Stochastic model specification in Markov switching vector error correction models," Papers 1807.00529, arXiv.org, revised Sep 2019.
- Korobilis, Dimitris, 2013.
"Hierarchical shrinkage priors for dynamic regressions with many predictors,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
- Korobilis, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," MPRA Paper 30380, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," LIDAM Discussion Papers CORE 2011021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2011. "Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors," Working Paper series 21_11, Rimini Centre for Economic Analysis.
- Elnura Baiaman kyzy & Roberto Leon-Gonzalez, 2024.
"Estimation of Nonlinear DSGE Models Through Laplace Based Solutions,"
GRIPS Discussion Papers
24-06, National Graduate Institute for Policy Studies.
- Elnura Baiaman kyzy & Roberto Leon-Gonzalez, 2024. "Estimation of Nonlinear DSGE Models Through Laplace Based Solutions," Working Paper series 24-11, Rimini Centre for Economic Analysis.
- Roberto Casarin, 2014. "A Note on Tractable State-Space Model for Symmetric Positive-Definite Matrices," Working Papers 2014:23, Department of Economics, University of Venice "Ca' Foscari".
- Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024.
"Forecasting euro area inflation using a huge panel of survey expectations,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
- Florian Huber & Luca Onorante & Michael Pfarrhofer, 2022. "Forecasting euro area inflation using a huge panel of survey expectations," Papers 2207.12225, arXiv.org.
- Monticini, Andrea & Ravazzolo, Francesco, 2014.
"Forecasting the intraday market price of money,"
Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
- Andrea Monticini & Francesco Ravazzolo, 2011. "Forecasting the intraday market price of money," Working Paper 2011/06, Norges Bank.
- Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
- Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
- Mandalinci, Zeyyad, 2017.
"Forecasting inflation in emerging markets: An evaluation of alternative models,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
- Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
- Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
- Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
- Maheu, John M. & Song, Yong, 2014.
"A new structural break model, with an application to Canadian inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 144-160.
- Maheu, John & Song, Yong, 2012. "A new structural break model with application to Canadian inflation forecasting," MPRA Paper 36870, University Library of Munich, Germany.
- John M. Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Paper series 27_12, Rimini Centre for Economic Analysis.
- John M Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Papers tecipa-448, University of Toronto, Department of Economics.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023.
"Are low frequency macroeconomic variables important for high frequency electricity prices?,"
Economic Modelling, Elsevier, vol. 120(C).
- Claudia Foroni & Francesco Ravazzolo & Luca Rossini, 2020. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Papers 2007.13566, arXiv.org, revised Dec 2022.
- Chew Lian Chua & Sandy Suardi & Sarantis Tsiaplias, 2011. "Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?," Melbourne Institute Working Paper Series wp2011n01, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
- Tamás Kiss & Hoang Nguyen & Pär Österholm, 2023.
"Modelling Okun’s law: Does non-Gaussianity matter?,"
Empirical Economics, Springer, vol. 64(5), pages 2183-2213, May.
- Kiss, Tamas & Nguyen, Hoang & Österholm, Pär, 2022. "Modelling Okun’s Law – Does non-Gaussianity Matter?," Working Papers 2022:1, Örebro University, School of Business.
- Antonio Pacifico, 2023. "Obesity and labour market outcomes in Italy: a dynamic panel data evidence with correlated random effects," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(4), pages 557-574, June.
- Mike G. Tsionas, 2016. "Alternatives to large VAR, VARMA and multivariate stochastic volatility models," Working Papers 217, Bank of Greece.
- David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
- Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Piergiorgio Alessandri & Haroon Mumtaz, 2017.
"Financial conditions and density forecasts for US output and inflation,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
- Piergiorgio Alessandri & Haroon Mumtaz, 2013. "Financial conditions and density forecasts for US Output and inflation," Joint Research Papers 4, Centre for Central Banking Studies, Bank of England.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial conditions and density forecasts for US output and inflation," CReMFi Discussion Papers 1, CReMFi, School of Economics and Finance, QMUL.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024.
"Addressing COVID-19 Outliers in BVARs with Stochastic Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," Working Papers 21-02R, Federal Reserve Bank of Cleveland, revised 09 Aug 2021.
- Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea & Mertens, Elmar, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," CEPR Discussion Papers 15964, C.E.P.R. Discussion Papers.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano & Mertens, Elmar, 2022. "Addressing COVID-19 outliers in BVARs with stochastic volatility," Discussion Papers 13/2022, Deutsche Bundesbank.
- Florian Huber & Michael Pfarrhofer, 2021.
"Dynamic shrinkage in time‐varying parameter stochastic volatility in mean models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 262-270, March.
- Florian Huber & Michael Pfarrhofer, 2020. "Dynamic shrinkage in time-varying parameter stochastic volatility in mean models," Papers 2005.06851, arXiv.org.
- Korobilis, Dimitris, 2015.
"Quantile forecasts of inflation under model uncertainty,"
SIRE Discussion Papers
2015-72, Scottish Institute for Research in Economics (SIRE).
- Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
- Dimitris Korobilis., 2015. "Quantile forecasts of inflation under model uncertainty," Working Papers 2015_09, Business School - Economics, University of Glasgow.
- Gregor Kastner & Florian Huber, 2020.
"Sparse Bayesian vector autoregressions in huge dimensions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
- Gregor Kastner & Florian Huber, 2017. "Sparse Bayesian vector autoregressions in huge dimensions," Papers 1704.03239, arXiv.org, revised Dec 2019.
- Angela Abbate & Massimiliano Marcellino, 2018.
"Point, interval and density forecasts of exchange rates with time varying parameter models,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(1), pages 155-179, January.
- Marcellino, Massimiliano & Abbate, Angela, 2016. "Point, interval and density forecasts of exchange rates with time-varying parameter models," CEPR Discussion Papers 11559, C.E.P.R. Discussion Papers.
- Abbate, Angela & Marcellino, Massimiliano, 2016. "Point, interval and density forecasts of exchange rates with time-varying parameter models," Discussion Papers 19/2016, Deutsche Bundesbank.
- Huber, Florian & Fischer, Manfred M. & Piribauer, Philipp, 2019.
"The Role Of Us-Based Fdi Flows For Global Output Dynamics,"
Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 943-973, April.
- Florian Huber & Manfred M. Fischer & Philipp Piribauer, 2017. "The role of US based FDI flows for global output dynamics," Department of Economics Working Papers wuwp239, Vienna University of Economics and Business, Department of Economics.
- Huber, Florian & Fischer, Manfred M. & Piribauer, Philipp, 2017. "The role of US based FDI flows for global output dynamics," Department of Economics Working Paper Series 239, WU Vienna University of Economics and Business.
- Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
- Byrne, Joseph & Fu, Rong, 2016. "Stock Return Prediction with Fully Flexible Models and Coefficients," MPRA Paper 75366, University Library of Munich, Germany.
- Boriss Siliverstovs, 2020.
"Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts,"
Empirical Economics, Springer, vol. 58(1), pages 7-27, January.
- Boriss Siliverstovs, 2019. "Assessing Nowcast Accuracy of US GDP Growth in Real Time: The Role of Booms and Busts," Working Papers 2019/01, Latvijas Banka.
- Florian Huber & Michael Pfarrhofer & Philipp Piribauer, 2020.
"A multi‐country dynamic factor model with stochastic volatility for euro area business cycle analysis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 911-926, September.
- Florian Huber & Michael Pfarrhofer & Philipp Piribauer, 2020. "A multi-country dynamic factor model with stochastic volatility for euro area business cycle analysis," Papers 2001.03935, arXiv.org.
- Spyros Makridakis & Andreas Merikas & Anna Merika & Mike G. Tsionas & Marwan Izzeldin, 2020. "A novel forecasting model for the Baltic dry index utilizing optimal squeezing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 56-68, January.
- Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Mauro Bernardi & Lea Petrella, 2015.
"Interconnected Risk Contributions: A Heavy-Tail Approach to Analyze U.S. Financial Sectors,"
JRFM, MDPI, vol. 8(2), pages 1-29, April.
- M. Bernardi & L. Petrella, 2014. "Interconnected risk contributions: an heavy-tail approach to analyse US financial sectors," Papers 1401.6408, arXiv.org, revised Apr 2014.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
- Fischer, Manfred M. & Hauzenberger, Niko & Huber, Florian & Pfarrhofer, Michael, 2022. "General Bayesian time-varying parameter VARs for modeling government bond yields," Working Papers in Regional Science 2021/01, WU Vienna University of Economics and Business.
- Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Yong Song, 2014.
"Modelling Regime Switching And Structural Breaks With An Infinite Hidden Markov Model,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 825-842, August.
- Yong Song, 2012. "Modelling Regime Switching and Structural Breaks with an Infinite Hidden Markov Model," Working Paper series 28_12, Rimini Centre for Economic Analysis.
- Karapanagiotidis, Paul, 2012. "Improving Bayesian VAR density forecasts through autoregressive Wishart Stochastic Volatility," MPRA Paper 38885, University Library of Munich, Germany.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
- Todd E. Clark & Francesco Ravazzolo, 2012.
"The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility,"
Working Papers (Old Series)
1218, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
- Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
- Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2017.
"Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 110-129, January.
- Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2013. "Macroeconomic factors strike back: A Bayesian change-point model of time-varying risk exposures and premia in the U.S. cross-section," Working Paper 2013/19, Norges Bank.
- Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2015. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Working Papers 550, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023.
"Exact Likelihood for Inverse Gamma Stochastic Volatility Models,"
Working Paper series
23-11, Rimini Centre for Economic Analysis.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majon, 2024. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 24-03, National Graduate Institute for Policy Studies.
- Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
- Deschamps, Philippe J., 2012.
"Bayesian estimation of generalized hyperbolic skewed student GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
- Deschamps, Philippe J., 2011. "Bayesian Estimation of Generalized Hyperbolic Skewed Student GARCH Models," DQE Working Papers 16, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 09 Jun 2012.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Ravazzolo Francesco & Rothman Philip, 2016.
"Oil-price density forecasts of US GDP,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
- Francesco Ravazzolo & Philip Rothman, 2015. "Oil-Price Density Forecasts of U.S. GDP," Working Papers No 10/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Martin Feldkircher & Luis Gruber & Florian Huber & Gregor Kastner, 2024. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian vector autoregressions?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2126-2145, September.
- Reif Magnus, 2021.
"Macroeconomic uncertainty and forecasting macroeconomic aggregates,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
- Magnus Reif, 2018. "Macroeconomic Uncertainty and Forecasting Macroeconomic Aggregates," ifo Working Paper Series 265, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Juan R. Hernández, 2024. "Covered interest parity: a forecasting approach to estimate the neutral band," BIS Working Papers 1206, Bank for International Settlements.
- Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
- Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011.
"Multivariate semi-nonparametric distributions with dynamic conditional correlations,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364, April.
- Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364.
- Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013.
"Time-varying combinations of predictive densities using nonlinear filtering,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
- Pelin Ilbas & Øistein Røisland & Tommy Sveen, 2013.
"The influence of the Taylor rule on US monetary policy,"
Working Paper
2013/04, Norges Bank.
- Pelin Ilbas & Øistein Røisland & Tommy Sveen, 2013. "The Influence of the Taylor rule on US monetary policy," Working Paper Research 241, National Bank of Belgium.
- Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016.
"Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR,"
Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
- Dovern, Jonas & Feldkircher, Martin & Huber , Florian, 2015. "Does Joint Modelling of the World Economy Pay Off? Evaluating Global Forecasts from a Bayesian GVAR," Working Papers 0590, University of Heidelberg, Department of Economics.
- Jonas Dovern & Martin Feldkircher & Florian Huber, 2015. "Does Joint Modelling of the World Economy Pay Off? Evaluating Global Forecasts from a Bayesian GVAR," Working Papers 200, Oesterreichische Nationalbank (Austrian Central Bank).
- Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013.
"Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
- Jason Ng & Catherine S. Forbes & Gael M. Martin & Brendan P.M. McCabe, 2011. "Non-Parametric Estimation of Forecast Distributions in Non-Gaussian, Non-linear State Space Models," Monash Econometrics and Business Statistics Working Papers 11/11, Monash University, Department of Econometrics and Business Statistics.
- Anders Warne & Günter Coenen & Kai Christoffel, 2017.
"Marginalized Predictive Likelihood Comparisons of Linear Gaussian State‐Space Models with Applications to DSGE, DSGE‐VAR, and VAR Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 103-119, January.
- Warne, Anders & Coenen, Günter & Christoffel, Kai, 2014. "Marginalized predictive likelihood comparisons of linear Gaussian state-space models with applications to DSGE, DSGEVAR, and VAR models," CFS Working Paper Series 478, Center for Financial Studies (CFS).
- Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-72, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2014.
"A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics,"
CEPR Discussion Papers
10160, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Business School.
- Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.
- Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-24, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
- Boyuan Zhang, 2022. "Incorporating Prior Knowledge of Latent Group Structure in Panel Data Models," Papers 2211.16714, arXiv.org, revised Oct 2023.
- Oliver Pfante & Nils Bertschinger, 2019. "Volatility Inference And Return Dependencies In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-44, May.
- Goldman, Elena, 2023. "Uncertainty in systemic risks rankings: Bayesian and frequentist analysis," Finance Research Letters, Elsevier, vol. 56(C).
- Camilla Muglia & Luca Santabarbara & Stefano Grassi, 2019. "Is Bitcoin a Relevant Predictor of Standard & Poor’s 500?," JRFM, MDPI, vol. 12(2), pages 1-10, May.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017.
"Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2013. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 28/13, Monash University, Department of Econometrics and Business Statistics.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2016. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 8/16, Monash University, Department of Econometrics and Business Statistics.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2014. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Papers 1401.3911, arXiv.org, revised Mar 2016.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2014. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 30/14, Monash University, Department of Econometrics and Business Statistics.
- Shu-Ping Shi & Yong Song, 2012.
"Identifying Speculative Bubbles with an Infinite Hidden Markov Model,"
Working Paper series
26_12, Rimini Centre for Economic Analysis.
- Song, Yong & Shi, Shuping, 2012. "Identifying speculative bubbles with an in finite hidden Markov model," MPRA Paper 36455, University Library of Munich, Germany.
- Davidovic, Milivoje, 2021. "From pandemic to financial contagion: High-frequency risk metrics and Bayesian volatility analysis," Finance Research Letters, Elsevier, vol. 42(C).
- Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Ellington, Michael & Fu, Xi & Zhu, Yunyi, 2023. "Real estate illiquidity and returns: A time-varying regional perspective," International Journal of Forecasting, Elsevier, vol. 39(1), pages 58-72.
- Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Extended Phillips Curve Models with non-filtered Data," Koç University-TUSIAD Economic Research Forum Working Papers 1321, Koc University-TUSIAD Economic Research Forum.
- Christian Hotz‐Behofsits & Florian Huber & Thomas Otto Zörner, 2018.
"Predicting crypto‐currencies using sparse non‐Gaussian state space models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 627-640, September.
- Christian Hotz-Behofsits & Florian Huber & Thomas O. Zorner, 2018. "Predicting crypto-currencies using sparse non-Gaussian state space models," Papers 1801.06373, arXiv.org, revised Feb 2018.
- Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
- Hoogerheide, Lennart F. & Ardia, David & Corré, Nienke, 2012. "Density prediction of stock index returns using GARCH models: Frequentist or Bayesian estimation?," Economics Letters, Elsevier, vol. 116(3), pages 322-325.
- Jaeho Kim & Sora Chon, 2022. "Bayesian estimation of the long-run trend of the US economy," Empirical Economics, Springer, vol. 62(2), pages 461-485, February.
- Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2023. "General Bayesian time‐varying parameter vector autoregressions for modeling government bond yields," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 69-87, January.
- Justyna Wróblewska & Anna Pajor, 2019. "One-period joint forecasts of Polish inflation, unemployment and interest rate using Bayesian VEC-MSF models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(1), pages 23-45, March.
- Todd E. Clark & Taeyoung Doh, 2011.
"A Bayesian evaluation of alternative models of trend inflation,"
Research Working Paper
RWP 11-16, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Working Papers (Old Series) 1134, Federal Reserve Bank of Cleveland.
- Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Phillips Curve Models with Non-Filtered Time Series," Tinbergen Institute Discussion Papers 13-011/III, Tinbergen Institute.
- Onorante, Luca & Raftery, Adrian E., 2016.
"Dynamic model averaging in large model spaces using dynamic Occam׳s window,"
European Economic Review, Elsevier, vol. 81(C), pages 2-14.
- Luca Onorante & Adrian E. Raftery, 2014. "Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window," Papers 1410.7799, arXiv.org.
- Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014.
"Beta-product dependent Pitman–Yor processes for Bayesian inference,"
Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
- Federico Bassetti & Roberto Casarin & Fabrizio Leisen, 2013. "Beta-Product Dependent Pitman-Yor Processes for Bayesian Inference," Working Papers 2013:13, Department of Economics, University of Venice "Ca' Foscari".
- Kang, Kyu Ho, 2015. "The predictive density simulation of the yield curve with a zero lower bound," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 51-66.
- Gupta, Rangan & Huber, Florian & Piribauer, Philipp, 2020.
"Predicting international equity returns: Evidence from time-varying parameter vector autoregressive models,"
International Review of Financial Analysis, Elsevier, vol. 68(C).
- Rangan Gupta & Florian Huber & Philipp Piribauer, 2018. "Predicting International Equity Returns: Evidence from Time-Varying Parameter Vector Autoregressive Models," Working Papers 201826, University of Pretoria, Department of Economics.
- Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
- Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
- Piergiorgio Alessandri & Haroon Mumtaz, 2017.
"Financial conditions and density forecasts for US output and inflation,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
- Piergiorgio Alessandri & Haroon Mumtaz, 2013. "Financial conditions and density forecasts for US Output and inflation," Joint Research Papers 4, Centre for Central Banking Studies, Bank of England.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
- Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial conditions and density forecasts for US output and inflation," CReMFi Discussion Papers 1, CReMFi, School of Economics and Finance, QMUL.
- DESCHAMPS, Philippe J., 2016. "Bayesian Semiparametric Forecasts of Real Interest Rate Data," LIDAM Discussion Papers CORE 2016050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
- Markku Lanne & Jani Luoto, 2018. "Data†Driven Identification Constraints for DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 236-258, April.
- Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
- Piergiorgio Alessandri & Haroon Mumtaz, 2017.
"Financial conditions and density forecasts for US output and inflation,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
- Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Online Appendix to "Financial conditions and density forecasts for US output and inflation"," Online Appendices 14-103, Review of Economic Dynamics.
- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Nov 2024.
- Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
- Benjamin K. Johannsen & Elmar Mertens, 2021.
"A Time‐Series Model of Interest Rates with the Effective Lower Bound,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
- Benjamin K. Johannsen & Elmar Mertens, 2016. "A Time Series Model of Interest Rates With the Effective Lower Bound," Finance and Economics Discussion Series 2016-033, Board of Governors of the Federal Reserve System (U.S.).
- Benjamin K Johannsen & Elmar Mertens, 2018. "A time series model of interest rates with the effective lower bound," BIS Working Papers 715, Bank for International Settlements.
- Abdymomunov, Azamat & Kang, Kyu Ho & Kim, Ki Jeong, 2016. "Can credit spreads help predict a yield curve?," Journal of International Money and Finance, Elsevier, vol. 64(C), pages 39-61.
- Boyuan Zhang, 2020. "Forecasting with Bayesian Grouped Random Effects in Panel Data," Papers 2007.02435, arXiv.org, revised Oct 2020.
- Garland Durham & John Geweke, 2013. "Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments," Working Paper Series 9, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
- Mike G. Tsionas, 2016. "Alternative Bayesian compression in Vector Autoregressions and related models," Working Papers 216, Bank of Greece.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
- Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
- Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
- Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," LIDAM Discussion Papers CORE 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- O'Brien, Martin & Velasco, Sofia, 2020. "Unobserved components models with stochastic volatility for extracting trends and cycles in credit," Research Technical Papers 09/RT/20, Central Bank of Ireland.
- Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023.
"A flexible predictive density combination for large financial data sets in regular and crisis periods,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2022. "A Flexible Predictive Density Combination for Large Financial Data Sets in Regular and Crisis Periods," Tinbergen Institute Discussion Papers 22-053/III, Tinbergen Institute.
- Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2021. "General Bayesian time-varying parameter VARs for predicting government bond yields," Papers 2102.13393, arXiv.org.
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
- Darjus Hosszejni & Gregor Kastner, 2019. "Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol," Papers 1906.12123, arXiv.org, revised Feb 2021.
- Boriss Siliverstovs, 2021. "Gauging the Effect of Influential Observations on Measures of Relative Forecast Accuracy in a Post-COVID-19 Era: Application to Nowcasting Euro Area GDP Growth," Working Papers 2021/01, Latvijas Banka.
- Leonardo N. Ferreira, 2021. "Forecasting with VAR-teXt and DFM-teXt Models:exploring the predictive power of central bank communication," Working Papers Series 559, Central Bank of Brazil, Research Department.
- Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
- repec:wrk:wrkemf:05 is not listed on IDEAS
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Panayotis Michaelides & Mike Tsionas & Panos Xidonas, 2020. "A Bayesian Signals Approach for the Detection of Crises," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 551-585, September.
- Leopoldo Catania & Stefano Grassi & Francesco Ravazzolo, 2018. "Forecasting Cryptocurrencies Financial Time Series," Working Papers No 5/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Fabrizio Leisen & Luca Rossini & Cristiano Villa, 2020. "Loss-based approach to two-piece location-scale distributions with applications to dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 309-333, June.
- Martin Magris & Mostafa Shabani & Alexandros Iosifidis, 2022. "Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics in Limit-Order Book Markets," Papers 2203.03613, arXiv.org, revised Jan 2023.
- Huber, Florian, 2018. "Dealing with heterogeneity in panel VARs using sparse finite mixtures," Department of Economics Working Paper Series 262, WU Vienna University of Economics and Business.
- Miescu, Mirela & Mumtaz, Haroon & Theodoridis, Konstantinos, 2024. "Non-linear Dynamics of Oil Supply News Shocks," Cardiff Economics Working Papers E2024/18, Cardiff University, Cardiff Business School, Economics Section.
- Anna Pajor & Justyna Wróblewska & Łukasz Kwiatkowski & Jacek Osiewalski, 2024. "Hybrid SV‐GARCH, t‐GARCH and Markov‐switching covariance structures in VEC models—Which is better from a predictive perspective?," International Statistical Review, International Statistical Institute, vol. 92(1), pages 62-86, April.
- Warne, Anders & Coenen, Günter & Christoffel, Kai, 2013. "Predictive likelihood comparisons with DSGE and DSGE-VAR models," Working Paper Series 1536, European Central Bank.
- Cem Çakmakli, 2012. "Bayesian Semiparametric Dynamic Nelson-Siegel Model," Working Paper series 59_12, Rimini Centre for Economic Analysis, revised Sep 2012.
- Wu, Ping, 2024. "Should I open to forecast? Implications from a multi-country unobserved components model with sparse factor stochastic volatility," International Journal of Forecasting, Elsevier, vol. 40(3), pages 903-917.
- Trujillo-Barrera, Andres & Pennings, Joost M.E., 2013. "Energy and Food Commodity Prices Linkage: An Examination with Mixed-Frequency Data," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150465, Agricultural and Applied Economics Association.
- Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.
- Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2017. "Forecasting the term structure of government bond yields in unstable environments," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 209-225.
- Consolo, Agostino & Foroni, Claudia & Martínez Hernández, Catalina, 2021. "A mixed frequency BVAR for the euro area labour market," Working Paper Series 2601, European Central Bank.
- Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.