IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwwuw/wuwp184.html
   My bibliography  Save this paper

Forecasting Global Equity Indices using Large Bayesian VARs

Author

Listed:
  • Florian Huber

    () (Department of Economics, Vienna University of Economics and Business)

  • Tamas Krisztin

    () (Department of Socio-Economics, Vienna University of Economics and Business)

  • Philipp Piribauer

    () (Department of Socio-Economics, Vienna University of Economics and Business)

Abstract

This paper proposes a large Bayesian Vector Autoregressive (BVAR) model with common stochastic volatility to forecast global equity indices. Using a dataset consisting of monthly data on global stock indices the BVAR model inherently incorporates co-movements in the stock markets. The time-varying specification of the covariance structure moreover accounts for sudden shifts in the level of volatility. In an out-of-sample forecasting application we show that the BVAR model with stochastic volatility significantly outperforms the random walk both in terms of root mean squared errors as well as Bayesian log predictive scores. The BVAR model without stochastic volatility, on the other hand, underperforms relative to the random walk. In a portfolio allocation exercise we moreover show that it is possible to use the forecasts obtained from our BVAR model with common stochastic volatility to set up simple investment strategies. Our results indicate that these simple investment schemes outperform a naive buy-and-hold strategy.

Suggested Citation

  • Florian Huber & Tamas Krisztin & Philipp Piribauer, 2014. "Forecasting Global Equity Indices using Large Bayesian VARs," Department of Economics Working Papers wuwp184, Vienna University of Economics and Business, Department of Economics.
  • Handle: RePEc:wiw:wiwwuw:wuwp184
    Note: PDF Document
    as

    Download full text from publisher

    File URL: https://epub.wu.ac.at/4318/1/wp184.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Costantini, Mauro & Crespo Cuaresma, Jesus & Hlouskova, Jaroslava, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Department of Economics Working Paper Series 4181, WU Vienna University of Economics and Business.
    2. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    3. Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2014. "No Arbitrage Priors, Drifting Volatilities, and the Term Structure of Interest Rates," CEPR Discussion Papers 9848, C.E.P.R. Discussion Papers.
    4. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    5. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    6. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    7. Gregory H. Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    8. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    9. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    10. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    BVAR; stochastic volatility; log-scores; equity indices; forecasting;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwwuw:wuwp184. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Department of Economics). General contact details of provider: http://www.wu.ac.at/economics/en .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.