IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v73y2025ics154461232401660x.html
   My bibliography  Save this article

Within-regime volatility dynamics for observable- and Markov-switching score-driven models

Author

Listed:
  • Blazsek, Szabolcs
  • Kong, Dejun
  • Shadoff, Samantha R.

Abstract

We study the novel Markov-switching (MS) Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, using within-regime volatility dynamics, similar to the recent observable-switching (OS) Beta-t-EGARCH model. We report in-sample results on the Standard & Poor’s 500 (S&P 500) and a random sample of 50 firms from the S&P 500 from March 1986 to July 2024. We compare the out-of-sample forecasting performances of OS-Beta-t-EGARCH and MS-Beta-t-EGARCH from May 2005 to July 2024 and confirm that OS-Beta-t-EGARCH is superior to MS-Beta-t-EGARCH.

Suggested Citation

  • Blazsek, Szabolcs & Kong, Dejun & Shadoff, Samantha R., 2025. "Within-regime volatility dynamics for observable- and Markov-switching score-driven models," Finance Research Letters, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:finlet:v:73:y:2025:i:c:s154461232401660x
    DOI: 10.1016/j.frl.2024.106631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461232401660X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.106631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    2. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    3. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    4. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
    5. Andrew Harvey & Dario Palumbo, 2023. "Regime switching models for circular and linear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 374-392, July.
    6. Blazsek Szabolcs & Escribano Alvaro & Licht Adrian, 2022. "Multivariate Markov-switching score-driven models: an application to the global crude oil market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(3), pages 313-335, June.
    7. Szabolcs Blazsek & Han-Chiang Ho, 2017. "Markov regime-switching Beta--EGARCH," Applied Economics, Taylor & Francis Journals, vol. 49(47), pages 4793-4805, October.
    8. Szabolcs Blazsek & Han-Chiang Ho & Su-Ping Liu, 2018. "Score-driven Markov-switching EGARCH models: an application to systematic risk analysis," Applied Economics, Taylor & Francis Journals, vol. 50(56), pages 6047-6060, December.
    9. Leopoldo Catania, 2021. "Dynamic Adaptive Mixture Models with an Application to Volatility and Risk," Journal of Financial Econometrics, Oxford University Press, vol. 19(4), pages 531-564.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2019. "Markov-switching score-driven multivariate models: outlier-robust measurement of the relationships between world crude oil production and US industrial production," UC3M Working papers. Economics 29030, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    3. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    4. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    6. Su, EnDer, 2013. "Stock index hedge using trend and volatility regime switch model considering hedging cost," MPRA Paper 49190, University Library of Munich, Germany.
    7. Krämer, Walter, 2008. "Long memory with Markov-Switching GARCH," Economics Letters, Elsevier, vol. 99(2), pages 390-392, May.
    8. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
    9. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    10. Aknouche, Abdelhakim, 2024. "Periodically homogeneous Markov chains: The discrete state space case," MPRA Paper 122287, University Library of Munich, Germany.
    11. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    12. Monica Billio & Roberto Casarin & Matteo Iacopini, 2024. "Bayesian Markov-Switching Tensor Regression for Time-Varying Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 109-121, January.
    13. Monica Billio & Maddalena Cavicchioli, 2013. "�Markov Switching Models for Volatility: Filtering, Approximation and Duality�," Working Papers 2013:24, Department of Economics, University of Venice "Ca' Foscari".
    14. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2020. "Markov-Switching Stochastic Processes in an Active Trading Algorithm in the Main Latin-American Stock Markets," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
    15. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    16. Chang, Kuang-Liang, 2023. "The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate," Journal of International Money and Finance, Elsevier, vol. 133(C).
    17. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    18. Jin, Xin & Maheu, John M., 2016. "Modeling covariance breakdowns in multivariate GARCH," Journal of Econometrics, Elsevier, vol. 194(1), pages 1-23.
    19. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    20. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:73:y:2025:i:c:s154461232401660x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.