IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/26_12.html
   My bibliography  Save this paper

Identifying Speculative Bubbles with an Infinite Hidden Markov Model

Author

Listed:
  • Shu-Ping Shi

    (Australian National University, Australia)

  • Yong Song

    (University of Technology Sydney, Australia)

Abstract

This paper proposes an infinite hidden Markov model (iHMM) to detect, date stamp, and estimate speculative bubbles. Three features make this new approach attractive to practitioners. first, the iHMM is capable of capturing the nonlinear dynamics of different types of bubble behaviors as it allows an infinite number of regimes. Second, the implementation of this procedure is straightforward as the detection, dating, and estimation of bubbles are done simultaneously in a coherent Bayesian framework. Third, the iHMM, by assuming hierarchical structures, is parsimonious and superior in out-of-sample forecast. Two empirical applications are presented: one to the Argentinian money base, exchange rate, and consumer price from January 1983 to November 1989; and the other to the U.S. oil price from April 1983 to December 2010. We find prominent results, which have not been discovered by the existing finite hidden Markov model. Model comparison shows that the iHMM is strongly supported by the predictive likelihood.

Suggested Citation

  • Shu-Ping Shi & Yong Song, 2012. "Identifying Speculative Bubbles with an Infinite Hidden Markov Model," Working Paper series 26_12, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:26_12
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp26_12.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    2. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    3. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    4. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," Review of Economic Studies, Oxford University Press, vol. 73(4), pages 1057-1084.
    5. Evans, George W, 1991. "Pitfalls in Testing for Explosive Bubbles in Asset Prices," American Economic Review, American Economic Association, vol. 81(4), pages 922-930, September.
    6. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    7. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    8. Hall, Stephen G & Psaradakis, Zacharias & Sola, Martin, 1999. "Detecting Periodically Collapsing Bubbles: A Markov-Switching Unit Root Test," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 143-154, March-Apr.
    9. Shi, Shuping & Arora, Vipin, 2012. "An application of models of speculative behaviour to oil prices," Economics Letters, Elsevier, vol. 115(3), pages 469-472.
    10. Psaradakis, Zacharias & Sola, Martin & Spagnolo, Fabio, 2001. "A simple procedure for detecting periodically collapsing rational bubbles," Economics Letters, Elsevier, vol. 72(3), pages 317-323, September.
    11. Charemza, Wojciech W. & Deadman, Derek F., 1995. "Speculative bubbles with stochastic explosive roots: The failure of unit root testing," Journal of Empirical Finance, Elsevier, vol. 2(2), pages 153-163, June.
    12. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    2. repec:gam:jecnmx:v:5:y:2017:i:4:p:47-:d:115992 is not listed on IDEAS
    3. Andras Fulop & Jun Yu, 2017. "Bayesian Analysis of Bubbles in Asset Prices," Econometrics, MDPI, Open Access Journal, vol. 5(4), pages 1-23, October.

    More about this item

    Keywords

    speculative bubbles; infinite hidden Markov model; Dirichlet process;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:26_12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.