IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Neglecting parameter changes in GARCH models"

by Hillebrand, Eric

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Boudt, Kris & Croux, Christophe, 2010. "Robust M-estimation of multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2459-2469, November.
  2. Mohamed El Hedi Arouri & Amine Lahiani & Khuong Nguyen Duc, 2010. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Working Papers 13, Development and Policies Research Center (DEPOCEN), Vietnam.
  3. Chun Liu & John M Maheu, 2007. "Are there Structural Breaks in Realized Volatility?," Working Papers tecipa-304, University of Toronto, Department of Economics.
  4. Adams, Zeno & Fuess, Roland & Glueck, Thorsten, 2016. "Are Correlations Constant? Empirical and Theoretical Results on Popular Correlation Models in Finance," Working Papers on Finance 1613, University of St. Gallen, School of Finance.
  5. Giorgio Canarella & WenShwo Fang & Stephen M. Miller & Stephen K. Pollard, 2008. "Is the Great Moderation Ending? UK and US Evidence," Working Papers 0801, University of Nevada, Las Vegas , Department of Economics.
  6. Eric Hillebrand & Gunther Schnabl, 2008. "A structural break in the effects of Japanese foreign exchange intervention on yen/dollar exchange rate volatility," International Economics and Economic Policy, Springer, vol. 5(4), pages 389-401, December.
  7. BenSaïda, Ahmed, 2015. "The frequency of regime switching in financial market volatility," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 63-79.
  8. WenShwo Fang & Stephen M. Miller, 2012. "Output Growth and Its Volatility: The Gold Standard through the Great Moderation," Working papers 2012-11, University of Connecticut, Department of Economics.
  9. Broto, Carmen, 2011. "Inflation targeting in Latin America: Empirical analysis using GARCH models," Economic Modelling, Elsevier, vol. 28(3), pages 1424-1434, May.
  10. WenShwo Fang & Stephen M. Miller, 2009. "Modeling the Volatility of Real GDP Growth: The Case of Japan Revisited," Working Papers 0904, University of Nevada, Las Vegas , Department of Economics.
  11. Xin Jin & John M. Maheu, 2014. "Modeling Covariance Breakdowns in Multivariate GARCH," Working Paper Series 36_14, The Rimini Centre for Economic Analysis.
  12. Jorge M. Andraz & Nelia M. Norte, 2013. "Output volatility in the OECD: Are the member states becoming less vulnerable to exogenous shocks?," Economic Issues Journal Articles, Economic Issues, vol. 18(2), pages 91-122, September.
  13. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
  14. Korkmaz, Turhan & Çevik, Emrah İ. & Atukeren, Erdal, 2012. "Return and volatility spillovers among CIVETS stock markets," Emerging Markets Review, Elsevier, vol. 13(2), pages 230-252.
  15. Politis, Dimitris N & Thomakos, Dimitrios D, 2008. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," University of California at San Diego, Economics Working Paper Series qt982208kx, Department of Economics, UC San Diego.
  16. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Discussion Paper 2010-84, Tilburg University, Center for Economic Research.
  17. Jean-Pierre Fouque & Matthew Lorig & Ronnie Sircar, 2012. "Second Order Multiscale Stochastic Volatility Asymptotics: Stochastic Terminal Layer Analysis & Calibration," Papers 1208.5802, arXiv.org, revised Sep 2015.
  18. Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
  19. Eric Hillebrand, 2005. "Mean Reversion Expectations and the 1987 Stock Market Crash: An Empirical Investigation," Finance 0501015, EconWPA.
  20. Marcel P. Visser, 2011. "GARCH Parameter Estimation Using High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(1), pages 162-197, Winter.
  21. Krämer, Walter, 2006. "Long memory with Markov-Switching GARCH," Technical Reports 2006,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  22. Igor LEBRUN & Ludovic DOBBELAERE, . "A Macro-econometric Model for the Economy of Lesotho," EcoMod2010 259600102, EcoMod.
  23. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
  24. Babikir, Ali & Gupta, Rangan & Mwabutwa, Chance & Owusu-Sekyere, Emmanuel, 2012. "Structural breaks and GARCH models of stock return volatility: The case of South Africa," Economic Modelling, Elsevier, vol. 29(6), pages 2435-2443.
  25. Han, Heejoon & Park, Joon Y., 2014. "GARCH with omitted persistent covariate," Economics Letters, Elsevier, vol. 124(2), pages 248-254.
  26. WenShwo Fang & Stephen M. Miller & ChunShen Lee, 2008. "The Great Moderation Flattens Fat Tails: Disappearing Leptokurtosis," Working papers 2008-48, University of Connecticut, Department of Economics.
  27. Enders, Walter & Li, Jing, 2015. "Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 71-81.
  28. Eric Hillebrand & Gunther Schnabl & Yasemin Ulu, 2006. "Japanese Foreign Exchange Intervention and the Yen/Dollar Exchange Rate: A Simultaneous Equations Approach Using Realized Volatility," CESifo Working Paper Series 1766, CESifo Group Munich.
  29. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
  30. Luis A. Gil-Alana & Goodness C. Aye & Rangan Gupta, 2012. "Testing for Persistence with Breaks and Outliers in South African House Prices," Faculty Working Papers 20/12, School of Economics and Business Administration, University of Navarra.
  31. Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
  32. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
  33. Grote, Claudia & Bertram, Philip, 2015. "A comparative Study of Volatility Breaks," Hannover Economic Papers (HEP) dp-558, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  34. Mihaela Craioveanu & Eric Hillebrand, 2012. "Why It Is Ok To Use The Har-Rv(1,5,21) Model," Working Papers 1201, University of Central Missouri, Department of Economics & Finance, revised Aug 2012.
  35. Ewing, Bradley T. & Malik, Farooq, 2016. "Volatility spillovers between oil prices and the stock market under structural breaks," Global Finance Journal, Elsevier, vol. 29(C), pages 12-23.
  36. Amélie Charles & Olivier Darné & Laurent Ferrara, 2014. "Does the Great Recession imply the end of the Great Moderation? International evidence," Working Papers hal-00952951, HAL.
  37. Bruce Q. Budd, 2016. "Structural break tests and the Greek sovereign debt crisis: revisited," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 40(3), pages 607-622, July.
  38. Pavel Cizek & Wolfgang Härdle & Vladimir Spokoiny, 2008. "Adaptive pointwise estimation in time-inhomogeneous time-series models," SFB 649 Discussion Papers SFB649DP2008-002, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  39. Dannemann, Tebbe & Prehn, Soren & Brümmer, Bernhard, 2014. "Optionshandel Und Maispreisvolatilitat: Does the Tail Wag the Dog?," 54th Annual Conference, Goettingen, Germany, September 17-19, 2014 187371, German Association of Agricultural Economists (GEWISOLA).
  40. Zhongfang He & John M Maheu, 2008. "Real Time Detection of Structural Breaks in GARCH Models," Working Papers tecipa-336, University of Toronto, Department of Economics.
  41. Kim, Moosup & Lee, Taewook & Noh, Jungsik & Baek, Changryong, 2014. "Quasi-maximum likelihood estimation for multiple volatility shifts," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 50-60.
  42. BAUWENS, Luc & DUFAYS, Arnaud & DE BACKER, Bruno, 2011. "Estimating and forecasting structural breaks in financial time series," CORE Discussion Papers 2011055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  43. Annastiina Silvennoinen & Timo Teräsvirta, 2015. "Testing constancy of unconditional variance in volatility models by misspecification and specification tests," CREATES Research Papers 2015-47, Department of Economics and Business Economics, Aarhus University.
  44. Wolfgang Härdle & Julius Mungo, 2007. "Long Memory Persistence in the Factor of Implied Volatility Dynamics," SFB 649 Discussion Papers SFB649DP2007-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  45. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
  46. Sinem Derindere KOSEOGLU & Emrah Ismail CEVIK, 2013. "Testing for Causality in Mean and Variance between the Stock Market and the Foreign Exchange Market: An Application to the Major Central and Eastern European Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(1), pages 65-86, March.
  47. Conrad, Christian & Kleen, Onno, 2016. "On the statistical properties of multiplicative GARCH models," Working Papers 0613, University of Heidelberg, Department of Economics.
  48. DUFAYS, Arnaud, 2012. "Infinite-state Markov-switching for dynamic volatility and correlation models," CORE Discussion Papers 2012043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  49. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  50. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
  51. Stéphane Goutte & Amine Ismail & Huyên Pham, 2015. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
  52. Anders Tolver Jensen & Theis Lange, 2009. "On IGARCH and convergence of the QMLE for misspecified GARCH models," CREATES Research Papers 2009-06, Department of Economics and Business Economics, Aarhus University.
  53. Messow, Philip & Krämer, Walter, 2013. "Spurious persistence in stochastic volatility," Economics Letters, Elsevier, vol. 121(2), pages 221-223.
  54. Moosup Kim & Sangyeol Lee, 2016. "On the tail index inference for heavy-tailed GARCH-type innovations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 237-267, April.
  55. Han, Heejoon & Park, Joon Y., 2006. "Time series properties of ARCH processes with persistent covariates," MPRA Paper 5199, University Library of Munich, Germany.
  56. Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
  57. Mohamed El Hedi Arouri & Shawkat Hammoudeh & Amine Lahiani & Duc Khuong Nguyen, 2013. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," Working Papers hal-00798033, HAL.
  58. Krämer, Walter & Tameze, Baudouin & Christou, Konstantinos, 2012. "On the origin of high persistence in GARCH-models," Economics Letters, Elsevier, vol. 114(1), pages 72-75.
  59. Farooq Malik, 2015. "Revisiting the relationship between risk and return," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 25-40, January.
  60. Azamo, Baudouin Tameze & Krämer, Walter, 2006. "Structural Change and long memory in the GARCH(1,1)-model," Technical Reports 2006,33, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  61. Jing, Li & Thompson, Henry, 2010. "A Note on the Oil Price Trend and GARCH Shocks," MPRA Paper 20654, University Library of Munich, Germany.
  62. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
  63. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
  64. Steven Trypsteen, . "The Importance of a Time-Varying Variance and Cross-Country Interactions in Forecast Models," Discussion Papers 2014/15, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  65. Mihaela Craioveanu & Eric Hillebrand, 2012. "Level changes in volatility models," Annals of Finance, Springer, vol. 8(2), pages 277-308, May.
  66. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
  67. Ane, Thierry, 2006. "An analysis of the flexibility of Asymmetric Power GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1293-1311, November.
  68. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, 01.
  69. Vasyl Golosnoy, 2007. "Sequential monitoring of minimum variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(1), pages 39-55, March.
  70. Steven Trypsteen, 2014. "Cross-Country Interactions, the Great Moderation and the Role of Output Volatility in Growth," Discussion Papers 2014/10, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  71. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
  72. Okur, Mustafa & Cevik, Emrah Ismail, 2013. "Testing intraday volatility spillovers in Turkish capital markets: evidence from ISE," MPRA Paper 71477, University Library of Munich, Germany, revised 2013.
  73. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
  74. Mstislav Elagin, 2008. "Locally adaptive estimation methods with application to univariate time series," Papers 0812.0449, arXiv.org.
  75. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2015. "Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and USD exchange rate," Energy Economics, Elsevier, vol. 48(C), pages 46-60.
  76. Dimitris N. Politis & Dimitrios D. Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Paper Series 44_07, The Rimini Centre for Economic Analysis.
  77. Xu, Ke-Li, 2013. "Power monotonicity in detecting volatility levels change," Economics Letters, Elsevier, vol. 121(1), pages 64-69.
  78. ERIC HILLEBRAND & MArcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
  79. Bin Chen & Yongmiao Hong, 2013. "Detecting for Smooth Structural Changes in GARCH Models," WISE Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  80. Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
  81. Fakhfekh, Mohamed & Hachicha, Nejib & Jawadi, Fredj & Selmi, Nadhem & Idi Cheffou, Abdoulkarim, 2016. "Measuring volatility persistence for conventional and Islamic banks: An FI-EGARCH approach," Emerging Markets Review, Elsevier, vol. 27(C), pages 84-99.
  82. Vivian, Andrew & Wohar, Mark E., 2012. "Commodity volatility breaks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(2), pages 395-422.
  83. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
  84. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," CORE Discussion Papers 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  85. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer, vol. 14(1), pages 1-23, March.
  86. Sang Hoon Kang & Seong-Min Yoon, 2010. "Sudden Changes and Persistence in Volatility of Korean Equity Sector Returns," Korean Economic Review, Korean Economic Association, vol. 26, pages 431-451.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.