IDEAS home Printed from https://ideas.repec.org/a/bap/journl/170204.html
   My bibliography  Save this article

A Mixtured Localized Likelihood Method for GARCH Models with Multiple Change-points

Author

Listed:
  • Haipeng Xing

    (Department of Applied Mathematics and Statistics, SUNY at Stony Brook, Stony Brook, 11790, U.S.A.)

  • Hongsong Yuan

    (School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai, 200433, CHINA)

  • Sichen Zhou

    (Worldquant LLC, Shanghai, 200040, CHINA)

Abstract

This paper discusses GARCH models with multiple change-points and proposes a mixture localized likelihood method to estimate the piecewise constant GARCH parameters. The proposed method is statistically and computationally attractive as it synthesizes two degenerated and basic inference procedures. A bounded complexity mixture approximation, whose computational complexity is linear only, is also proposed for the estimates of time-varying GARCH parameters. These procedures are further applied to solve challenging problems such as inference on the number and locations of change-points that partition the unknown parameter sequence into segments of constant values. An illustrative analysis of the S&P500 index is provided.

Suggested Citation

  • Haipeng Xing & Hongsong Yuan & Sichen Zhou, 2017. "A Mixtured Localized Likelihood Method for GARCH Models with Multiple Change-points," Review of Economics & Finance, Better Advances Press, Canada, vol. 8, pages 44-60, May.
  • Handle: RePEc:bap:journl:170204
    Note: The first author¡¯s research is supported by the National Science Foundation under grant DMS- 1206321 and DMS-1612501 at SUNY at Stony Brook. The second author¡¯s research is supported by the China Scholarship Council (File No. 201505990277). The authors would like to thank two anonymous referees for their helpful suggestions. The usual disclaimer applies.
    as

    Download full text from publisher

    File URL: http://www.bapress.ca/ref/ref-article/1923-7529-2017-02-44-17.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro Galeano & Ruey S. Tsay, 2010. "Shifts in Individual Parameters of a GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 122-153, Winter.
    2. Elena Andreou, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 290-318.
    3. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    4. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    5. Donald W. K. Andrews, 2003. "Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum," Econometrica, Econometric Society, vol. 71(1), pages 395-397, January.
    6. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    7. Berkes, Istvan & Horváth, Lajos & Kokoszka, Piotr, 2004. "Testing for parameter constancy in GARCH(p,q) models," Statistics & Probability Letters, Elsevier, vol. 70(4), pages 263-273, December.
    8. Paul Fearnhead & Zhen Liu, 2007. "On‐line inference for multiple changepoint problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 589-605, September.
    9. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    10. P. Fryzlewicz & S. Subba Rao, 2014. "Multiple-change-point detection for auto-regressive conditional heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 903-924, November.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Berkes, István & Gombay, Edit & Horváth, Lajos & Kokoszka, Piotr, 2004. "SEQUENTIAL CHANGE-POINT DETECTION IN GARCH(p,q) MODELS," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1140-1167, December.
    13. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    14. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
    15. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    16. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    17. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    18. Perron, P, 1993. "Erratum [The Great Crash, the Oil Price Shock and the Unit Root Hypothesis]," Econometrica, Econometric Society, vol. 61(1), pages 248-249, January.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
    2. David McMillan & Mark Wohar, 2011. "Structural breaks in volatility: the case of UK sector returns," Applied Financial Economics, Taylor & Francis Journals, vol. 21(15), pages 1079-1093.
    3. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, September.
    4. Mihaela Craioveanu & Eric Hillebrand, 2012. "Level changes in volatility models," Annals of Finance, Springer, vol. 8(2), pages 277-308, May.
    5. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    6. Leonardo Chaves Borges Cardoso & Maurício Vaz Lobo Bittencourt, 2016. "Price Volatility Transmission From Oil To Energy And Non-Energy Agricultural Commodities," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 181, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    7. Farooq Malik, 2015. "Revisiting the relationship between risk and return," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 25-40, January.
    8. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    9. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    10. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    11. Andreï Kostyrka & Dmitry Malakhov, 2021. "Was there ever a shift: Empirical analysis of structural-shift tests for return volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 110-139.
    12. Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
    13. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    14. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    15. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    16. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    17. Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," JRFM, MDPI, vol. 8(3), pages 1-26, August.
    18. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    19. PERRON, Benoît, 1999. "Jumps in the Volatility of Financial Markets," Cahiers de recherche 9912, Universite de Montreal, Departement de sciences economiques.
    20. Timmermann, Allan, 2000. "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pages 75-111, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bap:journl:170204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carlson The email address of this maintainer does not seem to be valid anymore. Please ask Carlson to update the entry or send us the correct address (email available below). General contact details of provider: http://www.bapress.ca .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.