IDEAS home Printed from
   My bibliography  Save this paper

Second Order Multiscale Stochastic Volatility Asymptotics: Stochastic Terminal Layer Analysis & Calibration


  • Jean-Pierre Fouque
  • Matthew Lorig
  • Ronnie Sircar


Multiscale stochastic volatility models have been developed as an efficient way to capture the principle effects on derivative pricing and portfolio optimization of randomly varying volatility. The recent book Fouque, Papanicolaou, Sircar and S{\o}lna (2011, CUP) analyzes models in which the volatility of the underlying is driven by two diffusions -- one fast mean-reverting and one slow-varying, and provides a first order approximation for European option prices and for the implied volatility surface, which is calibrated to market data. Here, we present the full second order asymptotics, which are considerably more complicated due to a terminal layer near the option expiration time. We find that, to second order, the implied volatility approximation depends quadratically on log-moneyness, capturing the convexity of the implied volatility curve seen in data. We introduce a new probabilistic approach to the terminal layer analysis needed for the derivation of the second order singular perturbation term, and calibrate to S&P 500 options data.

Suggested Citation

  • Jean-Pierre Fouque & Matthew Lorig & Ronnie Sircar, 2012. "Second Order Multiscale Stochastic Volatility Asymptotics: Stochastic Terminal Layer Analysis & Calibration," Papers 1208.5802,, revised Sep 2015.
  • Handle: RePEc:arx:papers:1208.5802

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    2. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    3. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    4. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1208.5802. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.