IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Implied Filtering Densities on Volatility's Hidden State

Listed author(s):
  • Carlos Fuertes
  • Andrew Papanicolaou
Registered author(s):

    We formulate and analyze an inverse problem using derivatives prices to obtain an implied filtering density on volatility's hidden state. Stochastic volatility is the unobserved state in a hidden Markov model (HMM) and can be tracked using Bayesian filtering. However, derivative data can be considered as conditional expectations that are already observed in the market, and which can be used as input to an inverse problem whose solution is an implied conditional density on volatility. Our analysis relies on a specification of the martingale change of measure, which we refer to as \textit{separability}. This specification has a multiplicative component that behaves like a risk premium on volatility uncertainty in the market. When applied to SPX options data, the estimated model and implied densities produce variance-swap rates that are consistent with the VIX volatility index. The implied densities are relatively stable over time and pick up some of the monthly effects that occur due to the options' expiration, indicating that the volatility-uncertainty premium could experience cyclic effects due to the maturity date of the options.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1203.6631
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1203.6631.

    as
    in new window

    Length:
    Date of creation: Mar 2012
    Date of revision: Mar 2017
    Publication status: Published in Applied Mathematical Finance, Vol. 21, No. 6, (2014) pp. 483-522
    Handle: RePEc:arx:papers:1203.6631
    Contact details of provider: Web page: http://arxiv.org/

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.6631. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.