IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

On IGARCH and convergence of the QMLE for misspecified GARCH models

  • Anders Tolver Jensen


    (Department of Natural Sciences, University of Copenhagen)

  • Theis Lange


    (Department of Economics, University of Copenhagen & CREATES)

We address the IGARCH puzzle by which we understand the fact that a GARCH(1,1) model fitted by quasi maximum likelihood estimation to virtually any financial dataset exhibit the property that alpha^hat + beta^hat is close to one. We prove that if data is generated by certain types of continuous time stochastic volatility models, but fitted to a GARCH(1,1) model one gets that alpha^hat + beta^hat tends to one in probability as the sampling frequency is increased. Hence, the paper suggests that the IGARCH effect could be caused by misspecification. The result establishes that the stochastic sequence of QMLEs do indeed behave as the deterministic parameters considered in the literature on filtering based on misspecified ARCH models, see e.g. Nelson (1992). An included study of simulations and empirical high frequency data is found to be in very good accordance with the mathematical results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2009-06.

in new window

Length: 33
Date of creation: 19 Feb 2009
Date of revision:
Handle: RePEc:aah:create:2009-06
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
  2. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, School of Economics and Management, University of Aarhus.
  3. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  4. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  5. Drost, F.C. & Werker, B.J.M., 1994. "Closing the GARCH gap : Continuous time GARCH modeling," Discussion Paper 1994-2, Tilburg University, Center for Economic Research.
  6. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  7. Drost, F.C. & Nijman, T.E., 1990. "Temporal aggregation of GARCH processes," Discussion Paper 1990-66, Tilburg University, Center for Economic Research.
  8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  9. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  11. Nelson, Daniel B., 1992. "Filtering and forecasting with misspecified ARCH models I : Getting the right variance with the wrong model," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 61-90.
  12. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
  13. Werker, B.J.M. & Drost, F.C., 1996. "Closing the GARCH gap : Continuous time GARCH modeling," Other publications TiSEM c3d29817-403a-4ad1-9295-8, Tilburg University, School of Economics and Management.
  14. Nelson, Daniel B. & Foster, Dean P., 1995. "Filtering and forecasting with misspecified ARCH models II : Making the right forecast with the wrong model," Journal of Econometrics, Elsevier, vol. 67(2), pages 303-335, June.
  15. Christian Francq & Jean-Michel Zakoïan, 1997. "Estimating Weak Garch Representations," Working Papers 97-40, Centre de Recherche en Economie et Statistique.
  16. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-86, January.
  17. Daniel B. Nelson & Dean P. Foster, 1994. "Asypmtotic Filtering Theory for Univariate Arch Models," NBER Technical Working Papers 0129, National Bureau of Economic Research, Inc.
  18. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  19. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2009-06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.