IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v227y2022i2p408-428.html
   My bibliography  Save this article

Simultaneous inference for time-varying models

Author

Listed:
  • Karmakar, Sayar
  • Richter, Stefan
  • Wu, Wei Biao

Abstract

A general class of non-stationary time series is considered in this paper. We estimate the time-varying coefficients by using local linear M-estimation. For these estimators, weak Bahadur representations are obtained and are used to construct simultaneous confidence bands. For practical implementation, we propose a bootstrap based method to circumvent the slow logarithmic convergence of the theoretical simultaneous bands. Our results substantially generalize and unify the treatments for several time-varying regression and auto-regression models. The performance for tvARCH and tvGARCH models is studied in simulations and a few real-life applications of our study are presented through the analysis of some popular financial datasets.

Suggested Citation

  • Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
  • Handle: RePEc:eee:econom:v:227:y:2022:i:2:p:408-428
    DOI: 10.1016/j.jeconom.2021.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621000725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    2. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2008. "Normalized least-squares estimation in time-varying ARCH models," LSE Research Online Documents on Economics 25187, London School of Economics and Political Science, LSE Library.
    3. Shinn-Juh Lin & Jian Yang, 2000. "Testing Shifts in Financial Models with Conditional Heteroskedasticity: An Empirical Distribution Function Approach," Econometric Society World Congress 2000 Contributed Papers 0063, Econometric Society.
    4. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1999. "Testing parameter constancy in linear models against stochastic stationary parameters," Journal of Econometrics, Elsevier, vol. 90(2), pages 193-213, June.
    5. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    6. Jens-Peter Kreiss & Efstathios Paparoditis, 2015. "Bootstrapping locally stationary processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 267-290, January.
    7. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    8. Rohan, Neelabh, 2013. "A time varying GARCH(p,q) model and related statistical inference," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1983-1990.
    9. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    10. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    11. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    12. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    15. Zhou Zhou & Wei Biao Wu, 2010. "Simultaneous inference of linear models with time varying coefficients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 513-531, September.
    16. Lin D Y & Ying Z, 2001. "Semiparametric and Nonparametric Regression Analysis of Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 103-126, March.
    17. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    18. Robert F. Engle & Jose Gonzalo Rangel, 2005. "The Spline GARCH Model for Unconditional Volatility and its Global Macroeconomic Causes," Working Papers 2005/13, Czech National Bank.
    19. Neelabh Rohan & T. V. Ramanathan, 2013. "Nonparametric estimation of a time-varying GARCH model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 33-52, March.
    20. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karmakar, Sayar & Gupta, Rangan & Cepni, Oguzhan & Rognone, Lavinia, 2023. "Climate risks and predictability of the trading volume of gold: Evidence from an INGARCH model," Resources Policy, Elsevier, vol. 82(C).
    2. Yicong Lin & Mingxuan Song, 2023. "Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence," Tinbergen Institute Discussion Papers 23-049/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Discussion Paper 2010-84, Tilburg University, Center for Economic Research.
    2. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
    3. Haipeng Xing & Hongsong Yuan & Sichen Zhou, 2017. "A Mixtured Localized Likelihood Method for GARCH Models with Multiple Change-points," Review of Economics & Finance, Better Advances Press, Canada, vol. 8, pages 44-60, May.
    4. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    5. Ewing, Bradley T. & Malik, Farooq, 2017. "Modelling asymmetric volatility in oil prices under structural breaks," Energy Economics, Elsevier, vol. 63(C), pages 227-233.
    6. Xu, Ke-Li, 2013. "Power monotonicity in detecting volatility levels change," Economics Letters, Elsevier, vol. 121(1), pages 64-69.
    7. Pourkhanali, Armin & Tafakori, Laleh & Bee, Marco, 2023. "Forecasting Value-at-Risk using functional volatility incorporating an exogenous effect," International Review of Financial Analysis, Elsevier, vol. 89(C).
    8. Rohan, Neelabh, 2013. "A time varying GARCH(p,q) model and related statistical inference," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1983-1990.
    9. Cizek, P. & Haerdle, W. & Spokoiny, V., 2007. "Adaptive Pointwise Estimation in Time-Inhomogeneous Time-Series Models," Discussion Paper 2007-35, Tilburg University, Center for Economic Research.
    10. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2021. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 224(2), pages 306-329.
    11. Farooq Malik, 2015. "Revisiting the relationship between risk and return," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 25-40, January.
    12. Sayar Karmakar & Arkaprava Roy, 2020. "Bayesian modelling of time-varying conditional heteroscedasticity," Papers 2009.06007, arXiv.org, revised Mar 2021.
    13. Nazlioglu, Saban & Gupta, Rangan & Gormus, Alper & Soytas, Ugur, 2020. "Price and volatility linkages between international REITs and oil markets," Energy Economics, Elsevier, vol. 88(C).
    14. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    15. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    16. Igor LEBRUN & Ludovic DOBBELAERE, 2010. "A Macro-econometric Model for the Economy of Lesotho," EcoMod2010 259600102, EcoMod.
    17. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    18. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    19. Bradley T. Ewing & Farooq Malik & Hassan Anjum, 2019. "Forecasting value‐at‐risk in oil prices in the presence of volatility shifts," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 341-350, July.
    20. Chen, Bin & Hong, Yongmiao, 2016. "Detecting For Smooth Structural Changes In Garch Models," Econometric Theory, Cambridge University Press, vol. 32(03), pages 740-791, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:227:y:2022:i:2:p:408-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.