IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0054.html

Testing Parameter Constancy in Linear Models against Stochastic Stationary Parameters

Author

Listed:
  • Lin, Chien-Fu
  • Teräsvirta, Timo

    (Dept. of Economic Statistics, Stockholm School of Economics)

Abstract

This paper considers testing parameter constancy in linear models when the alternative is that a subset of the parameters follow a stationary vector autoregressive process of known finite order. This kind of a linear model is only identified under the alternative, which usually precludes finding a test statistic with an analytic nuyll distribution. In the present situation, however, it is still possible to derive a test statistic with an asymptotic chi-squared distribution under the null hypothesis and this is done in the paper. The small-sample properties of the test statistic are investigated by simulation and found satisfactory. The test retains its power when the alternative to parameter constancy is a random walk parameter process.

Suggested Citation

  • Lin, Chien-Fu & Teräsvirta, Timo, 1995. "Testing Parameter Constancy in Linear Models against Stochastic Stationary Parameters," SSE/EFI Working Paper Series in Economics and Finance 54, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0054
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Gebrenegus Ghilagaber, 2004. "Another Look at Chow's Test for the Equality of Two Heteroscedastic Regression Models," Quality & Quantity: International Journal of Methodology, Springer, vol. 38(1), pages 81-93, February.
    3. Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
    4. Mikihito Nishi, 2023. "Testing for Stationary or Persistent Coefficient Randomness in Predictive Regressions," Papers 2309.04926, arXiv.org, revised May 2024.
    5. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    6. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.