IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2011041.html
   My bibliography  Save this paper

Locally stationary volatility modelling

Author

Listed:
  • VAN BELLEGEM, Sébastien

    () (Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium and ECORE)

Abstract

The increasing works on parameter instability, structural changes and regime switches lead to the natural research question whether the assumption of stationarity is appropriate to model volatility processes. Early econometric studies have provided testing procedures of covariance stationarity and have shown empirical evidence for the unconditional time-variation of the dependence structure of many financial time series.After a review of several econometric tests of covariance stationarity, this survey paper focuses on several attempts in the literature to model the time-varying second- order dependence of volatility time series. The approaches that are summarized in this discussion paper propose various specification for this time-varying dynamics. In some of them an explicit variation over time is suggested, such as in the spline GARCH model. Larger classes of nonstationary models have also been proposed, in which the variation of the parameters may be more general such as in the so-called locally stationary models. In another approach that is called “adaptive”, no explicit global model is assumed and local parametric model are adaptively fitted at each point over time. Multivariate extensions are also visited. A comparison of these approaches is proposed in this paper and some illustrations are provided on the two last decades of data of the Dow Jones Industrial Average index.

Suggested Citation

  • VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," CORE Discussion Papers 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2011041
    as

    Download full text from publisher

    File URL: http://uclouvain.be/cps/ucl/doc/core/documents/coredp2011_41web.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    2. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    3. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    4. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    5. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    6. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
    7. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    8. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    9. Sébastien Van Bellegem & Rainer Dahlhaus, 2006. "Semiparametric estimation by model selection for locally stationary processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 721-746.
    10. Wolfgang Hardle & Helmut Herwartz & Vladimir Spokoiny, 2003. "Time Inhomogeneous Multiple Volatility Modeling," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 55-95.
    11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    12. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Van Bellegem, Sebastien & von Sachs, Rainer, 2004. "Forecasting economic time series with unconditional time-varying variance," International Journal of Forecasting, Elsevier, vol. 20(4), pages 611-627.
    14. Rappoport, Peter & Reichlin, Lucrezia, 1989. "Segmented Trends and Non-stationary Time Series," Economic Journal, Royal Economic Society, vol. 99(395), pages 168-177, Supplemen.
    15. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    16. Dehay, Dominique & Leskow, Jacek, 1996. "Testing stationarity for stock market data," Economics Letters, Elsevier, vol. 50(2), pages 205-212, February.
    17. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
    18. P. Čížek & W. Härdle & V. Spokoiny, 2009. "Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 248-271, July.
    19. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    20. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    21. Richard Paap & Philip Hans Franses & Marco Van Der Leij, 2002. "Modelling and forecasting level shifts in absolute returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 601-616.
    22. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    23. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670.
    24. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    2. Koo, Bonsoo & Linton, Oliver, 2015. "Let’S Get Lade: Robust Estimation Of Semiparametric Multiplicative Volatility Models," Econometric Theory, Cambridge University Press, vol. 31(04), pages 671-702, August.
    3. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Keywords

    volatility; locally stationary time series; multiplicative model; adaptive estimation;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2011041. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.