IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

A range unit root test

  • Escribano, Álvaro
  • García, Ana
  • Aparicio, Felipe M.

Since the seminal paper by Dickey and Fuller in 1979, unit-root tests have conditioned the standard approaches to analyse time series with strong serial dependence, the focus being placed in the detection of eventual unit roots in an autorregresive model fitted to the series. In this paper we propose a completely different method to test for the type of long-wave patterns observed not only in unit root time series but also in series following more complex data generating mechanisms. To this end, our testing device analyses the trend exhibit by the data, without imposing any constraint on the generating mechanism. We call our device the Range Unit Root (RUR) Test since it is constructed from running ranges of the series. These statistics allow a more general characterization of a strong serial dependence in the mean behavior, thus endowing our test with a number of desirable properties, among which its error-model-free asymptotic distribution, the invariance to nonlinear monotonic transformations of the series and the robustness to the presence of level shifts and additive outliers. In addition, the RUR test outperforms the power of standard unit root tests on near-unit-root stationary time series and is asymptotically immune to noise.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://e-archivo.uc3m.es/bitstream/handle/10016/208/ws041104.pdf?sequence=1
Download Restriction: no

Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws041104.

as
in new window

Length:
Date of creation: Feb 2004
Date of revision:
Handle: RePEc:cte:wsrepe:ws041104
Contact details of provider: Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
  2. Vogelsang, T.I. & Perron, P., 1991. "Nonstationary and Level Shifts With An Application To Purchasing Power Parity," Papers 359, Princeton, Department of Economics - Econometric Research Program.
  3. Phillips, P.C.B., 1986. "Testing for a Unit Root in Time Series Regression," Cahiers de recherche 8633, Universite de Montreal, Departement de sciences economiques.
  4. Pierre Perron & Gabriel RodrÌguez, 2003. "Searching For Additive Outliers In Nonstationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 193-220, 03.
  5. Eric Zivot & Donald W.K. Andrews, 1990. "Further Evidence on the Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Cowles Foundation Discussion Papers 944, Cowles Foundation for Research in Economics, Yale University.
  6. Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
  7. Perron, P., 1989. "Testing For A Unit Root In A Time Series With A Changing Mean," Papers 347, Princeton, Department of Economics - Econometric Research Program.
  8. Stock, James H., 1994. "Deciding between I(1) and I(0)," Journal of Econometrics, Elsevier, vol. 63(1), pages 105-131, July.
  9. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
  10. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
  11. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
  12. repec:cup:etheor:v:11:y:1995:i:2:p:331-46 is not listed on IDEAS
  13. Hamori, Shigeyuki & Tokihisa, Akira, 1997. "Testing for a unit root in the presence of a variance shift1," Economics Letters, Elsevier, vol. 57(3), pages 245-253, December.
  14. Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
  15. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
  16. Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  17. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
  18. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
  19. Rappoport, Peter & Reichlin, Lucrezia, 1989. "Segmented Trends and Non-stationary Time Series," Economic Journal, Royal Economic Society, vol. 99(395), pages 168-77, Supplemen.
  20. Hoek, Henk & Lucas, Andre & van Dijk, Herman K., 1995. "Classical and Bayesian aspects of robust unit root inference," Journal of Econometrics, Elsevier, vol. 69(1), pages 27-59, September.
  21. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-87, July.
  22. Ermini, Luigi & Granger, Clive W. J., 1993. "Some generalizations on the algebra of I(1) processes," Journal of Econometrics, Elsevier, vol. 58(3), pages 369-384, August.
  23. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(02), pages 331-346, February.
  24. Escribano, Álvaro & García, Ana & Aparicio, Felipe M., 2003. "Range unit root tests," DES - Working Papers. Statistics and Econometrics. WS ws031126, Universidad Carlos III de Madrid. Departamento de Estadística.
  25. Leybourne, Stephen J. & C. Mills, Terence & Newbold, Paul, 1998. "Spurious rejections by Dickey-Fuller tests in the presence of a break under the null," Journal of Econometrics, Elsevier, vol. 87(1), pages 191-203, August.
  26. Burridge, Peter & Guerre, Emmanuel, 1996. "The Limit Distribution of level Crossings of a Random Walk, and a Simple Unit Root Test," Econometric Theory, Cambridge University Press, vol. 12(04), pages 705-723, October.
  27. Perron, Pierre & Vogelsang, Timothy J, 1992. "Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 467-70, October.
  28. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  29. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-78, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws041104. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.