IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Range Unit Root Test

  • Felipe M. Aparicio

    ()

  • Alvaro Escribano
  • Ana García

Since the seminal paper by Dickey and Fuller in 1979, unit-root tests have conditioned the standard approaches to analyse time series with strong serial dependence, the focus being placed in the detection of eventual unit roots in an autorregresive model fitted to the series. In this paper we propose a completely different method to test for the type of“long-wave” patterns observed not only in unit root time series but also in series following more complex data generating mechanisms. To this end, our testing device analyses the trend exhibit by the data, without imposing any constraint on the generating mechanism. We call our device the Range Unit Root (RUR) Test since it is constructed from running ranges of the series. These statistics allow a more general characterization of a strong serial dependence in the mean behavior, thus endowing our test with a number of desirable properties, among which its error-model-free asymptotic distribution, the invariance to nonlinear monotonic transformations of the series and the robustness to the presence of level shifts and additive outliers. In addition, the RUR test outperforms the power of standard unit root tests on near-unit-root stationary time series and is asymptotically immune to noise.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://docubib.uc3m.es/WORKINGPAPERS/WS/ws041104.pdf
Download Restriction: no

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws041104.

as
in new window

Length:
Date of creation: Feb 2004
Date of revision:
Handle: RePEc:cte:wsrepe:ws041104
Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Perron, P., 1989. "Testing For A Unit Root In A Time Series With A Changing Mean," Papers 347, Princeton, Department of Economics - Econometric Research Program.
  2. Anindya Banerjee & Robin L. Lumsdaine & James H. Stock, 1990. "Recursive and Sequential Tests of the Unit Root and Trend Break Hypothesis: Theory and International Evidence," NBER Working Papers 3510, National Bureau of Economic Research, Inc.
  3. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-78, October.
  4. Stock, James H., 1994. "Deciding between I(1) and I(0)," Journal of Econometrics, Elsevier, vol. 63(1), pages 105-131, July.
  5. Ermini, Luigi & Granger, Clive W. J., 1993. "Some generalizations on the algebra of I(1) processes," Journal of Econometrics, Elsevier, vol. 58(3), pages 369-384, August.
  6. Felipe M. Aparicio & Alvaro Escribano & Ana García, 2003. "Range Unit Root Tests," Statistics and Econometrics Working Papers ws031126, Universidad Carlos III, Departamento de Estadística y Econometría.
  7. Phillips, P.C.B., 1986. "Testing for a Unit Root in Time Series Regression," Cahiers de recherche 8633, Universite de Montreal, Departement de sciences economiques.
  8. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  9. Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-70, July.
  10. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
  11. Burridge, Peter & Guerre, Emmanuel, 1996. "The Limit Distribution of level Crossings of a Random Walk, and a Simple Unit Root Test," Econometric Theory, Cambridge University Press, vol. 12(04), pages 705-723, October.
  12. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
  13. Vogelsang, T.I. & Perron, P., 1991. "Nonstationary and Level Shifts With An Application To Purchasing Power Parity," Papers 359, Princeton, Department of Economics - Econometric Research Program.
  14. Rappoport, Peter & Reichlin, Lucrezia, 1989. "Segmented Trends and Non-stationary Time Series," Economic Journal, Royal Economic Society, vol. 99(395), pages 168-77, Supplemen.
  15. Hoek, Henk & Lucas, Andre & van Dijk, Herman K., 1995. "Classical and Bayesian aspects of robust unit root inference," Journal of Econometrics, Elsevier, vol. 69(1), pages 27-59, September.
  16. Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
  17. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  18. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(02), pages 331-346, February.
  19. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
  20. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  21. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
  22. Pierre Perron & Gabriel RodrÌguez, 2003. "Searching For Additive Outliers In Nonstationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 193-220, 03.
  23. Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
  24. Hamori, Shigeyuki & Tokihisa, Akira, 1997. "Testing for a unit root in the presence of a variance shift1," Economics Letters, Elsevier, vol. 57(3), pages 245-253, December.
  25. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  26. Perron, Pierre & Vogelsang, Timothy J, 1992. "Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 467-70, October.
  27. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
  28. Leybourne, Stephen J. & C. Mills, Terence & Newbold, Paul, 1998. "Spurious rejections by Dickey-Fuller tests in the presence of a break under the null," Journal of Econometrics, Elsevier, vol. 87(1), pages 191-203, August.
  29. repec:cup:etheor:v:11:y:1995:i:2:p:331-46 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws041104. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.