IDEAS home Printed from https://ideas.repec.org/f/pmo411.html
   My authors  Follow this author

Sergei Morozov

Personal Details

First Name:Sergei
Middle Name:
Last Name:Morozov
Suffix:
RePEc Short-ID:pmo411
[This author has chosen not to make the email address public]
http://www.wavelet3000.org

Affiliation

(in no particular order)

Morgan Stanley

http://www.morganstanley.com
New York

Department of Economics
Stanford University

Stanford, California (United States)
https://economics.stanford.edu/

(650)-725-3266
(650)-725-5702
Ralph Landau Economics Building, Stanford, CA 94305-6072
RePEc:edi:destaus (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
  2. Sergei Morozov, 2000. "Econometric Evaluation of Rational Belief Models," Econometric Society World Congress 2000 Contributed Papers 1654, Econometric Society.

Articles

  1. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.

    Cited by:

    1. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2016. "Dynamic Predictive Density Combinations for Large Data Sets in Economics and Finance," Tinbergen Institute Discussion Papers 15-084/III, Tinbergen Institute, revised 03 Jul 2017.
    2. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," CREATES Research Papers 2013-09, Department of Economics and Business Economics, Aarhus University.
    3. Michael C. Hatcher & Eric M. Scheffel, 2016. "Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 569-591, December.
    4. John Gibson & James P Henson, 2016. "Getting the most from MATLAB: ditching canned routines and embracing coder," Economics Bulletin, AccessEcon, vol. 36(4), pages 2519-2525.
    5. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. Van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-20, March.
    6. Matt P. Dziubinski & Stefano Grassi, 2012. "Heterogeneous Computing in Economics: A Simplified Approach," CREATES Research Papers 2012-15, Department of Economics and Business Economics, Aarhus University.
    7. Nalan Baştürk & Roberto Casarin & Francesco Ravazzolo & Herman K. Van Dijk, 2016. "Computational Complexity and Parallelization in Bayesian Econometric Analysis," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-3, February.
    8. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    9. Yongyang Cai & Kenneth L. Judd & Greg Thain & Stephen J. Wright, 2013. "Solving Dynamic Programming Problems on a Computational Grid," NBER Working Papers 18714, National Bureau of Economic Research, Inc.
    10. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.

Articles

  1. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.

    Cited by:

    1. Feldkircher, Martin & Gruber, Thomas & Huber, Florian, 2017. "Spreading the word or reducing the term spread? Assessing spillovers from euro area monetary policy," Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168111, Verein für Socialpolitik / German Economic Association.
    2. Michal Franta & Jozef Barunik & Roman Horvath & Katerina Smidkova, 2011. "Are Bayesian Fan Charts Useful for Central Banks? Uncertainty, Forecasting, and Financial Stability Stress Tests," Working Papers 2011/10, Czech National Bank.
    3. Davide Pettenuzzo & Konstantinos Metaxoglou & Aaron Smith, 2016. "Option-Implied Equity Premium Predictions via Entropic TiltinG," Working Papers 99R, Brandeis University, Department of Economics and International Businesss School, revised Aug 2016.
    4. Maximiano Pinheiro & Paulo Esteves, 2012. "On the uncertainty and risks of macroeconomic forecasts: combining judgements with sample and model information," Empirical Economics, Springer, vol. 42(3), pages 639-665, June.
    5. BELMONTE, Miguel A.G. & KOOP, Gary & KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage in time-varying parameter models," CORE Discussion Papers 2011036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    7. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," CEPR Discussion Papers 7542, C.E.P.R. Discussion Papers.
    9. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    10. Beechey, Meredith & Österholm, Pär, 2007. "The Rise and Fall of U.S. Inflation Persistence," Working Paper Series 2007:18, Uppsala University, Department of Economics.
    11. Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
    12. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    13. Luca Benati, 2003. "Evolving Post-World War II U.K. Economic Performance," Computing in Economics and Finance 2003 171, Society for Computational Economics.
    14. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
    15. Gargano, Antonio & Pettenuzzo, Davide & Timmermann, Allan G, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," CEPR Discussion Papers 10104, C.E.P.R. Discussion Papers.
    16. Juan Manuel Julio, 2005. "Implementacion, Uso e Interpretación del FAN CHART," BORRADORES DE ECONOMIA 002815, BANCO DE LA REPÚBLICA.
    17. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    18. Koop, Gary & Korobilis, Dimitris, 2012. "Large time-varying parameter VARs," MPRA Paper 38591, University Library of Munich, Germany.
    19. Luca Benati, 2005. "U.K. Monetary Regimes and Macroeconomic Stylised Facts," Computing in Economics and Finance 2005 107, Society for Computational Economics.
    20. Mumtaz, Haroon, 2010. "Evolving UK macroeconomic dynamics: a time-varying factor augmented VAR," Bank of England working papers 386, Bank of England.
    21. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    22. Koop, Gary & Korobilis, Dimitris, 2009. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," SIRE Discussion Papers 2009-40, Scottish Institute for Research in Economics (SIRE).
    23. Martin Feldkircher & Florian Huber, 2016. "Unconventional US Monetary Policy: New Tools, Same Channels?," Department of Economics Working Papers wuwp222, Vienna University of Economics and Business, Department of Economics.
    24. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland, revised 30 Jun 2016.
    25. Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
    26. Dong Jin Lee, 2009. "Testing Parameter Stability in Quantile Models: An Application to the U.S. Inflation Process," Working papers 2009-26, University of Connecticut, Department of Economics.
    27. Crespo Cuaresma, Jesus & Doppelhofer, Gernot & Feldkircher, Martin & Huber, Florian, 2018. "Spillovers from US monetary policy: Evidence from a time-varying parameter GVAR model," Working Papers in Economics 2018-6, University of Salzburg.
    28. Kagraoka, Yusho & Moussa, Zakaria, 2013. "Quantitative easing, credibility and the time-varying dynamics of the term structure of interest rate in Japan," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 25(C), pages 181-201.
    29. Frank Smets & Raf Wouters, 2004. "Forecasting with a Bayesian DSGE Model: An Application to the Euro Area," Journal of Common Market Studies, Wiley Blackwell, vol. 42(4), pages 841-867, November.
    30. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
    31. Colin Ellis & Haroon Mumtaz & Pawel Zabczyk, 2014. "What Lies Beneath? A Time‐varying FAVAR Model for the UK Transmission Mechanism," Economic Journal, Royal Economic Society, vol. 0(576), pages 668-699, May.
    32. Beechey, Meredith, 2004. "Excess Sensitivity and Volatility of Long Interest Rates: The Role of Limited Information in Bond Markets," Working Paper Series 173, Sveriges Riksbank (Central Bank of Sweden).
    33. Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2008. "On the Evolution of Monetary Policy," Working Paper series 24_08, Rimini Centre for Economic Analysis.
    34. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    35. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "The great moderation of the term structure of UK interest rates," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 856-871, September.
    36. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Working Papers (Old Series) 1134, Federal Reserve Bank of Cleveland, revised 2011.
    37. Galvao, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2020. "Does Judgment Improve Macroeconomic Density Forecasts?," EMF Research Papers 33, Economic Modelling and Forecasting Group.
    38. Michele Campolieti & Deborah Gefang & Gary Koop, 2011. "Time Variation in the Dynamics of Worker Flows: Evidence from the US and Canada," Working Papers 1138, University of Strathclyde Business School, Department of Economics.
    39. Harrison, Richard & Taylor, Tim, 2012. "Non-rational expectations and the transmission mechanism," Bank of England working papers 448, Bank of England.
    40. Österholm, Pär, 2006. "Incorporating Judgement in Fan Charts," Working Paper Series 2006:30, Uppsala University, Department of Economics.
    41. Murasawa, Yasutomo, 2019. "Bayesian multivariate Beveridge--Nelson decomposition of I(1) and I(2) series with cointegration," MPRA Paper 91979, University Library of Munich, Germany.
    42. Frank Smets & Rafael Wouters, 2005. "Bayesian New Neoclassical Synthesis (NNS) Models: Modern Tools for Central Banks," Journal of the European Economic Association, MIT Press, vol. 3(2-3), pages 422-433, 04/05.
    43. Gary Koop & Lise Tole, 2013. "Forecasting the European carbon market," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
    44. Miguel Belmonte & Gary Koop, 2013. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Working Papers 1302, University of Strathclyde Business School, Department of Economics.
    45. Francois R. Velde, 2004. "Poor hand or poor play? the rise and fall of inflation in the U.S," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 28(Q I), pages 34-51.
    46. Rhys Bidder & Andrew McKenna, 2015. "Robust stress testing," Working Paper Series 2015-13, Federal Reserve Bank of San Francisco, revised 22 Sep 2015.
    47. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    48. Baumeister, Christiane & Liu, Philip & Mumtaz, Haroon, 2010. "Changes in the transmission of monetary policy: evidence from a time-varying factor-augmented VAR," Bank of England working papers 401, Bank of England.
    49. Feldkircher, Martin & Gruber, Thomas & Huber, Florian, 2020. "International effects of a compression of euro area yield curves," Journal of Banking & Finance, Elsevier, vol. 113(C).
    50. Benati, Luca & Goodhart, Charles, 2007. "Investigating time-variation in the marginal predictive power of the yield spread," Working Paper Series 802, European Central Bank.
    51. Fratzscher, Marcel & Straub, Roland, 2010. "Asset Prices, News Shocks and the Current Account," CEPR Discussion Papers 8080, C.E.P.R. Discussion Papers.
    52. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, April.
    53. Christiane Baumeister & Lutz Kilian, 2013. "What Central Bankers Need to Know about Forecasting Oil Prices," Staff Working Papers 13-15, Bank of Canada.
    54. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    55. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
    56. KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," CORE Discussion Papers 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    57. Michal Franta & Jozef Baruník & Roman Horváth & Katerina Smídková, 2014. "Are Bayesian Fan Charts Useful? The Effect of Zero Lower Bound and Evaluation of Financial Stability Stress Tests," International Journal of Central Banking, International Journal of Central Banking, vol. 10(1), pages 159-188, March.
    58. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019. "Vulnerable Growth," American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
    59. Kateøina Šmídková, 2005. "How Inflation Targeters (Can) Deal with Uncertainty," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 55(7-8), pages 316-332, July.
    60. João Henrique Gonçalves Mazzeu & Esther Ruiz & Helena Veiga, 2018. "Uncertainty And Density Forecasts Of Arma Models: Comparison Of Asymptotic, Bayesian, And Bootstrap Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 388-419, April.
    61. Lahiri, Kajal & Liu, Fushang, 2005. "ARCH models for multi-period forecast uncertainty-a reality check using a panel of density forecasts," MPRA Paper 21693, University Library of Munich, Germany.
    62. Luca Benati, 2008. "The "Great Moderation" in the United Kingdom," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(1), pages 121-147, February.
    63. Koop, Gary & Tole, Lise, 2013. "Modeling the relationship between European carbon permits and certified emission reductions," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 166-181.
    64. Katerina Smidkova, 2003. "Methods Available to Monetary Policy Makers to Deal with Uncertainty," Macroeconomics 0310002, University Library of Munich, Germany.
    65. Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
    66. Farooq Akram & Andrew Binning & Junior Maih, 2016. "Joint prediction bands for macroeconomic risk management," Working Paper 2016/7, Norges Bank.
    67. Miles, William & Vijverberg, Chu-Ping, 2011. "Formal targets, central bank independence and inflation dynamics in the UK: A Markov-Switching approach," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 644-655.
    68. Rodríguez, Aldo, 2020. "Estimación Bayesiana de un Modelo de Economía Abierta con Sector Bancario," Dynare Working Papers 52, CEPREMAP.
    69. George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
    70. Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
    71. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    72. Timothy Cogley & Thomas J. Sargent, 2008. "Anticipated Utility And Rational Expectations As Approximations Of Bayesian Decision Making," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(1), pages 185-221, February.
    73. Yasutomo Murasawa, 2014. "Measuring the natural rates, gaps, and deviation cycles," Empirical Economics, Springer, vol. 47(2), pages 495-522, September.
    74. Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
    75. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    76. Hansen, Bruce E., 2006. "Interval forecasts and parameter uncertainty," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 377-398.
    77. Rhys Bidder & Raffaella Giacomini & Andrew McKenna, 2016. "Stress Testing with Misspecified Models," Working Paper Series 2016-26, Federal Reserve Bank of San Francisco, revised 27 Sep 2016.
    78. Schlösser, Alexander, 2020. "Forecasting industrial production in Germany: The predictive power of leading indicators," Ruhr Economic Papers 838, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    79. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.
    80. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
    81. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    82. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    83. Par Osterholm, 2008. "A structural Bayesian VAR for model-based fan charts," Applied Economics, Taylor & Francis Journals, vol. 40(12), pages 1557-1569.
    84. Stefania D'Amico, 2005. "Density selection and combination under model ambiguity: an application to stock returns," Finance and Economics Discussion Series 2005-09, Board of Governors of the Federal Reserve System (U.S.), revised 2005.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-CMP: Computational Economics (1) 2009-08-16

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Sergei Morozov should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.