IDEAS home Printed from https://ideas.repec.org/p/fip/feddwp/1804.html
   My bibliography  Save this paper

The Accuracy of Linear and Nonlinear Estimation in the Presence of the Zero Lower Bound

Author

Listed:

Abstract

This paper evaluates the accuracy of linear and nonlinear estimation methods for dynamic stochastic general equilibrium models. We generate a large sample of artificial datasets using a global solution to a nonlinear New Keynesian model with an occasionally binding zero lower bound (ZLB) constraint on the nominal interest rate. For each dataset, we estimate the nonlinear model—solved globally, accounting for the ZLB—and the linear analogue of the nonlinear model—solved locally, ignoring the ZLB—with a Metropolis-Hastings algorithm where the likelihood function is evaluated with a Kalman filter, unscented Kalman filter, or particle filter. In datasets that resemble the U.S. experience, the nonlinear model estimated with a particle filter is more accurate and has a higher marginal data density than the linear model estimated with a Kalman filter, as long as the measurement error variances in the particle filter are not too big.

Suggested Citation

  • Atkinson, Tyler & Richter, Alexander W. & Throckmorton, Nathaniel, 2018. "The Accuracy of Linear and Nonlinear Estimation in the Presence of the Zero Lower Bound," Working Papers 1804, Federal Reserve Bank of Dallas.
  • Handle: RePEc:fip:feddwp:1804
    DOI: 10.24149/wp1804
    as

    Download full text from publisher

    File URL: https://www.dallasfed.org/-/media/documents/research/papers/2018/wp1804.pdf
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fabio Canova & Filippo Ferroni & Christian Matthes, 2014. "Choosing The Variables To Estimate Singular Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1099-1117, November.
    2. repec:bla:ecinqu:v:55:y:2017:i:4:p:1593-1624 is not listed on IDEAS
    3. Anton Nakov, 2008. "Optimal and Simple Monetary Policy Rules with Zero Floor on the Nominal Interest Rate," International Journal of Central Banking, International Journal of Central Banking, vol. 4(2), pages 73-127, June.
    4. Suh, Hyunduk & Walker, Todd B., 2016. "Taking financial frictions to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 39-65.
    5. Doh, Taeyoung, 2011. "Yield curve in an estimated nonlinear macro model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1229-1244, August.
    6. Otrok, Christopher, 2001. "On measuring the welfare cost of business cycles," Journal of Monetary Economics, Elsevier, vol. 47(1), pages 61-92, February.
    7. S Borağan Aruoba & Pablo Cuba-Borda & Frank Schorfheide, 2018. "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," Review of Economic Studies, Oxford University Press, vol. 85(1), pages 87-118.
    8. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    9. Wolman, Alexander L, 2005. "Real Implications of the Zero Bound on Nominal Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(2), pages 273-296, April.
    10. Gavin, William T. & Keen, Benjamin D. & Richter, Alexander & Throckmorton, Nathaniel, 2013. "The stimulative effect of forward guidance," Working Papers 2013-38, Federal Reserve Bank of St. Louis, revised 30 Apr 2014.
    11. Richter Alexander W. & Throckmorton Nathaniel A., 2015. "The zero lower bound: frequency, duration, and numerical convergence," The B.E. Journal of Macroeconomics, De Gruyter, vol. 15(1), pages 1-26, January.
    12. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    13. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    14. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    15. Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
    16. Yasuo Hirose & Atsushi Inoue, 2016. "The Zero Lower Bound and Parameter Bias in an Estimated DSGE Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 630-651, June.
    17. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    18. Rotemberg, Julio J, 1982. "Sticky Prices in the United States," Journal of Political Economy, University of Chicago Press, vol. 90(6), pages 1187-1211, December.
    19. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    20. Pablo A. Guerron-Quintana, 2010. "What you match does matter: the effects of data on DSGE estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 774-804.
    21. Ngo, Phuong V., 2014. "Optimal discretionary monetary policy in a micro-founded model with a zero lower bound on nominal interest rate," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 44-65.
    22. Luigi Bocola, 2016. "The Pass-Through of Sovereign Risk," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 879-926.
    23. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    24. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    25. Coleman, Wilbur John, II, 1991. "Equilibrium in a Production Economy with an Income Tax," Econometrica, Econometric Society, vol. 59(4), pages 1091-1104, July.
    26. Martin M. Andreasen, 2013. "Non‐Linear Dsge Models And The Central Difference Kalman Filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 929-955, September.
    27. repec:aea:aejmac:v:9:y:2017:i:3:p:186-221 is not listed on IDEAS
    28. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    29. Yasuo Hirose & Atsushi Inoue, 2016. "The Zero Lower Bound and Parameter Bias in an Estimated DSGE Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 630-651, June.
    30. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian estimation; nonlinear solution; particle filter; unscented Kalman filter;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:feddwp:1804. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Amy Chapman). General contact details of provider: http://edirc.repec.org/data/frbdaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.