IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for " Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress"

by Frydman, Halina & Altman, Edward I & Kao, Duen-Li

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Roy Batchelor & George Albanis, 2002. "Combining Heterogeneous Classifiers for Stock Selection," Working Papers wp02-01, Warwick Business School, Finance Group.
  2. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01314553, HAL.
  3. Becchetti, Leonardo & Sierra, Jaime, 2003. "Bankruptcy risk and productive efficiency in manufacturing firms," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2099-2120, November.
  4. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
  5. Misund, Bård, 2015. "Financial Ratios and Prediction on Corporate Bankruptcy in the Atlantic Salmon Industry," UiS Working Papers in Economics and Finance 2015/9, University of Stavanger.
  6. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Documents de travail du Centre d'Economie de la Sorbonne 16026, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  7. Llano Monelos Pablo De & Piñeiro Sánchez Carlos & Rodríguez López Manuel, 2014. "DEA as a business failure prediction tool. Application to the case of galician SMEs," Contaduría y Administración, Accounting and Management, vol. 59(2), pages 65-96, abril-jun.
  8. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
  9. repec:eee:finlet:v:22:y:2017:i:c:p:211-226 is not listed on IDEAS
  10. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
  11. Emel, Ahmet Burak & Oral, Muhittin & Reisman, Arnold & Yolalan, Reha, 2003. "A credit scoring approach for the commercial banking sector," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 103-123, June.
  12. Situm Mario, 2014. "Inability of Gearing-Ratio as Predictor for Early Warning Systems," Business Systems Research, De Gruyter Open, vol. 5(2), pages 23-45, September.
  13. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
  14. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
  15. repec:hal:journl:halshs-01281948 is not listed on IDEAS
  16. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
  17. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
  18. Puertas Medina, Rosa & Selva, Maria Luisa Martí, 2013. "Análise do credit scoring," RAE - Revista de Administração de Empresas, FGV-EAESP Escola de Administração de Empresas de São Paulo (Brazil), vol. 53(3), May.
  19. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
  20. Pablo de Llano Monelos & Manuel Rodríguez López & Carlos Piñeiro Sánchez, 2013. "Bankruptcy Prediction Models in Galician companies. Application of Parametric Methodologies and Artificial Intelligence," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 117-136.
  21. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
  22. Bastos, Joao, 2007. "Credit scoring with boosted decision trees," MPRA Paper 8034, University Library of Munich, Germany.
  23. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
  24. Balcaen S. & Ooghe H., 2004. "Alternative methodologies in studies on business failure: do they produce better results than the classic statistical methods?," Vlerick Leuven Gent Management School Working Paper Series 2004-16, Vlerick Leuven Gent Management School.
  25. Esteban Alfaro Cortés & Matías Gámez Martínez & Noelia García Rubio, 2007. "Multiclass Corporate Failure Prediction by Adaboost.M1," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(3), pages 301-312, August.
  26. Antonio David Somoza Lopez & Josep Vallverdu Calafell, 2003. "Una comparacion de la seleccion de los ratios contables en los modelos contable-financieros de prediccion de la insolvencia empresarial," Working Papers in Economics 94, Universitat de Barcelona. Espai de Recerca en Economia.
  27. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  28. Espahbodi, Hassan & Espahbodi, Pouran, 2003. "Binary choice models and corporate takeover," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 549-574, April.
  29. Adrian Gepp & Kuldeep Kumar & Sukanto Bhattacharya, 2010. "Business failure prediction using decision trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 536-555.
  30. Ana Paula Matias Gama, 2012. "Credit risk assessment and the impact of the New Basel Capital Accord on small and medium-sized enterprises: An empirical analysis," Management Research Review, Emerald Group Publishing, vol. 35(8), pages 727-749, July.
  31. Cakir, Murat, 2005. "Firma Başarısızlığının Dinamiklerinin Belirlenmesinde Makina Öğrenmesi Teknikleri: Ampirik Uygulamalar ve Karşılaştırmalı Analiz
    [Machine Learning Techniques in Determining the Dynamics of Corporat
    ," MPRA Paper 55975, University Library of Munich, Germany.
  32. An, Xudong & Deng, Yongheng & Gabriel, Stuart A., 2011. "Asymmetric information, adverse selection, and the pricing of CMBS," Journal of Financial Economics, Elsevier, vol. 100(2), pages 304-325, May.
  33. Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2005. "Exploring interactions between real activity and the financial stance," Journal of Financial Stability, Elsevier, vol. 1(3), pages 308-341, April.
  34. Paolo Angelis & Fulvio Gismondi & Riccardo Ottaviani, 1994. "A non-parametric statistical model for the control of Italian insurance companies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 17(1), pages 69-84, March.
  35. Maurice Peat, 2001. "Bankruptcy Probability: A Theoretical and Empirical Examination," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 20, December.
  36. Josep M. Argilés, 1998. "Accounting information and the prediction of farm viability," Economics Working Papers 277, Department of Economics and Business, Universitat Pompeu Fabra.
  37. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
  38. repec:pal:jorsoc:v:68:y:2017:i:9:d:10.1057_s41274-016-0166-3 is not listed on IDEAS
  39. Alessandro Zeli, 2014. "The financial distress indicators trend in Italy: an analysis of medium-size enterprises," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 4(2), pages 199-221, December.
  40. Aaro Hazak & Kadri Männasoo, 2007. "Indicators of corporate default : an EU based empirical study," Bank of Estonia Working Papers 2007-10, Bank of Estonia, revised 04 Sep 2007.
  41. LaDue, Eddy L. & Miller, Lynn H. & Kwiatkowski, Joseph H., 1990. "Investment Behavior And Energy Conservation," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 19(2), October.
  42. Salehi Mahdi & Rostami Neda, 2013. "Bankruptcy Prediction By Using Support Vector Machines And Genetic Algorithms," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 8(1), pages 104-114, April.
  43. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
  44. David Feldman & Shulamith Gross, 2005. "Mortgage Default: Classification Trees Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 30(4), pages 369-396, June.
  45. Ostermark, Ralf & Hoglund, Rune, 1998. "Addressing the multigroup discriminant problem using multivariate statistics and mathematical programming," European Journal of Operational Research, Elsevier, vol. 108(1), pages 224-237, July.
  46. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével
    [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]
    ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
  47. Deyanira Bernal Dom¨ªnguez & Mar¨ªa Luisa Saavedra Garc¨ªa & Lydia Mar¨ªa L¨®pez Barraza, 2014. "Financial Analysis Management of Companies in a Region of Mexico: the Need of a Financial Ratios Annual Directory," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 64-78, August.
  48. Tor Jacobson & Jesper Lindé & Kasper Roszbach, 2013. "Firm Default And Aggregate Fluctuations," Journal of the European Economic Association, European Economic Association, vol. 11(4), pages 945-972, 08.
  49. Carling, Kenneth & Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2007. "Corporate credit risk modeling and the macroeconomy," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 845-868, March.
  50. Kattan, Michael W. & Cooper, Randolph B., 2000. "A simulation of factors affecting machine learning techniques: an examination of partitioning and class proportions," Omega, Elsevier, vol. 28(5), pages 501-512, October.
  51. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
  52. Sami Ben Jabeur & Youssef Fahmi, 2014. "Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative," Working Papers 2014-317, Department of Research, Ipag Business School.
  53. de Andres, Javier & Landajo, Manuel & Lorca, Pedro, 2005. "Forecasting business profitability by using classification techniques: A comparative analysis based on a Spanish case," European Journal of Operational Research, Elsevier, vol. 167(2), pages 518-542, December.
  54. Harlan D. Platt & Marjorie B. Platt, 2008. "Financial Distress Comparison Across Three Global Regions," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 1(1), pages 1-34, December.
  55. Kattan, MW & Cooper, RB, 1998. "The predictive accuracy of computer-based classification decision techniques.A review and research directions," Omega, Elsevier, vol. 26(4), pages 467-482, August.
  56. Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
  57. Poon, Winnie P. H. & Firth, Michael & Fung, Hung-Gay, 1999. "A multivariate analysis of the determinants of Moody's bank financial strength ratings," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(3), pages 267-283, August.
  58. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
  59. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
  60. Leon G. Shilton & John Teall, 1994. "Option-Based Prediction of Commercial Mortgage Defaults," Journal of Real Estate Research, American Real Estate Society, vol. 9(2), pages 219-236.
  61. Catherine Refait, 2004. "La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux," Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
  62. Loredana Cultrera & Mélanie Croquet & Jérémy Jospin, 2017. "Predicting Bankruptcy of Belgian SMEs: A Hybrid Approach Based on Factorial Analysi," International Business Research, Canadian Center of Science and Education, vol. 10(3), pages 33-41, March.
  63. repec:kap:iaecre:v:13:y:2007:i:3:p:301-312 is not listed on IDEAS
  64. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
  65. Cochran, James J. & Darrat, Ali F. & Elkhal, Khaled, 2006. "On the bankruptcy of internet companies: An empirical inquiry," Journal of Business Research, Elsevier, vol. 59(10-11), pages 1193-1200, October.
  66. Mohammad Saleh JAHUR & S. M. Nasrul QUADIR, 2012. "Financial Distress in Small and Medium Enterprises (SMES) of Bangladesh: Determinants and Remedial Measures," Economia. Seria Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 15(1), pages 46-61, June.
  67. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
  68. Fernando García & Francisco Guijarro & Ismael Moya, 2013. "Monitoring credit risk in the social economy sector by means of a binary goal programming model," Service Business, Springer;Pan-Pacific Business Association, vol. 7(3), pages 483-495, September.
  69. Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
  70. Wolfgang K. Härdle & Rouslan A. Moro & Dorothea Schäfer, 2004. "Rating Companies with Support Vector Machines," Discussion Papers of DIW Berlin 416, DIW Berlin, German Institute for Economic Research.
  71. Platt, Harlan D. & Platt, Marjorie B., 2006. "Understanding Differences Between Financial Distress and Bankruptcy," Review of Applied Economics, Review of Applied Economics, vol. 2(2).
  72. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
  73. Barniv, Ran & Mehrez, Abraham & Kline, Douglas M., 2000. "Confidence intervals for controlling the probability of bankruptcy," Omega, Elsevier, vol. 28(5), pages 555-565, October.
  74. repec:hal:journl:halshs-01314553 is not listed on IDEAS
  75. Guray Kucukkocaoglu & Ozge Sezgin Alp, 2012. "IPO mechanism selection by using Classification and Regression Trees," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(3), pages 873-888, April.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.