IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/39935.html
   My bibliography  Save this paper

Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time

Author

Listed:
  • du Jardin, Philippe
  • Severin, Eric

Abstract

This study attempts to show how a Kohonen map can be used to improve the temporal stability of the accuracy of a financial failure model. Most models lose a significant part of their ability to generalize when data used for estimation and prediction purposes are collected over different time periods. As their lifespan is fairly short, it becomes a real problem if a model is still in use when re-estimation appears to be necessary. To overcome this drawback, we introduce a new way of using a Kohonen map as a prediction model. The results of our experiments show that the generalization error achieved with a map remains more stable over time than that achieved with conventional methods used to design failure models (discriminant analysis, logistic regression, Cox’s method, and neural networks). They also show that type-I error, the economically costliest error, is the greatest beneficiary of this gain in stability.

Suggested Citation

  • du Jardin, Philippe & Severin, Eric, 2011. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," MPRA Paper 39935, University Library of Munich, Germany, revised 03 Apr 2012.
  • Handle: RePEc:pra:mprapa:39935
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/39935/1/MPRA_paper_39935.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Methodological comparison between DEA (data envelopment analysis) and DEA-DA (discriminant analysis) from the perspective of bankruptcy assessment," European Journal of Operational Research, Elsevier, vol. 199(2), pages 561-575, December.
    2. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    3. Wu, Y. & Gaunt, C. & Gray, S., 2010. "A comparison of alternative bankruptcy prediction models," Journal of Contemporary Accounting and Economics, Elsevier, vol. 6(1), pages 34-45.
    4. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    5. Gordon D. Murray, 1977. "A Cautionary Note on Selection of Variables in Discriminant Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 246-250, November.
    6. Brusco, Michael J. & Steinley, Douglas, 2011. "Exact and approximate algorithms for variable selection in linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 123-131, January.
    7. Abdul Aziz & David C. Emanuel & Gerald H. Lawson, 1988. "Bankruptcy Prediction ‐ An Investigation Of Cash Flow Based Models[1]," Journal of Management Studies, Wiley Blackwell, vol. 25(5), pages 419-437, September.
    8. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    9. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    10. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    11. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    12. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    13. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    14. Altman, Edward I. & Eisenbeis, Robert A., 1978. "Financial Applications of Discriminant Analysis: A Clarification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(1), pages 185-195, March.
    15. Wilcox, Jw, 1973. "Prediction Of Business Failure Using Accounting Data," Journal of Accounting Research, Wiley Blackwell, vol. 11, pages 163-179.
    16. Gentry, Ja & Newbold, P & Whitford, Dt, 1985. "Classifying Bankrupt Firms With Funds Flow Components," Journal of Accounting Research, Wiley Blackwell, vol. 23(1), pages 146-160.
    17. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    18. Frederick M. Richardson & Gregory D. Kane & Patricia Lobingier, 1998. "The Impact of Recession on the Prediction of Corporate Failure," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(1&2), pages 167-186.
    19. Moriarity, S, 1979. "Communicating Financial Information Through Multidimensional Graphics," Journal of Accounting Research, Wiley Blackwell, vol. 17(1), pages 205-224.
    20. Pinches, George E & Mingo, Kent A & Caruthers, J Kent, 1973. "The Stability of Financial Patterns in Industrial Organizations," Journal of Finance, American Finance Association, vol. 28(2), pages 389-396, May.
    21. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    22. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    23. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    24. Gupta, Manak C, 1969. "The Effect of Size, Growth, and Industry on the Financial Structure of Manufacturing Companies," Journal of Finance, American Finance Association, vol. 24(3), pages 517-529, June.
    25. Frederick M. Richardson & Gregory D. Kane & Patricia Lobingier, 1998. "The Impact of Recession on the Prediction of Corporate Failure," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(1‐2), pages 167-186, January.
    26. Mensah, Ym, 1984. "An Examination Of The Stationarity Of Multivariate Bankruptcy Prediction Models - A Methodological Study," Journal of Accounting Research, Wiley Blackwell, vol. 22(1), pages 380-395.
    27. Lacher, R. C. & Coats, Pamela K. & Sharma, Shanker C. & Fant, L. Franklin, 1995. "A neural network for classifying the financial health of a firm," European Journal of Operational Research, Elsevier, vol. 85(1), pages 53-65, August.
    28. Dambolena, Ismael G & Khoury, Sarkis J, 1980. "Ratio Stability and Corporate Failure," Journal of Finance, American Finance Association, vol. 35(4), pages 1017-1026, September.
    29. Glenn Milligan, 1981. "A monte carlo study of thirty internal criterion measures for cluster analysis," Psychometrika, Springer;The Psychometric Society, vol. 46(2), pages 187-199, June.
    30. Duarte Silva, António Pedro, 2001. "Efficient Variable Screening for Multivariate Analysis," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 35-62, January.
    31. James R. Barth & R. Dan Brumbaugh & Daniel Sauerhaft & George Wang, 1985. "Thrift institution failures: causes and policy issues," Proceedings 68, Federal Reserve Bank of Chicago.
    32. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    2. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    3. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    4. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    5. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    6. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    7. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    8. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    9. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    10. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    11. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    12. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    13. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    14. du Jardin, Philippe, 2009. "Bankruptcy prediction models: How to choose the most relevant variables?," MPRA Paper 44380, University Library of Munich, Germany.
    15. du Jardin, Philippe, 2008. "Bankruptcy prediction and neural networks: The contribution of variable selection methods," MPRA Paper 44384, University Library of Munich, Germany.
    16. Oz, Ibrahim Onur & Simga-Mugan, Can, 2018. "Bankruptcy prediction models' generalizability: Evidence from emerging market economies," Advances in accounting, Elsevier, vol. 41(C), pages 114-125.
    17. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    18. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    19. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    20. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..

    More about this item

    Keywords

    Decision support systems; Finance; Bankruptcy prediction; Self-organizing map;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:39935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.