IDEAS home Printed from https://ideas.repec.org/a/taf/euract/v13y2004i3p465-497.html
   My bibliography  Save this article

Predicting corporate failure: empirical evidence for the UK

Author

Listed:
  • Andreas Charitou
  • Evi Neophytou
  • Chris Charalambous

Abstract

The main purpose of this study is to examine the incremental information content of operating cash flows in predicting financial distress and thus develop reliable failure prediction models for UK public industrial firms. Neural networks and logit methodology were employed to a dataset of fifty-one matched pairs of failed and non-failed UK public industrial firms over the period 1988-97. The final models are validated using an out-of-sample-period ex-ante test and the Lachenbruch jackknife procedure. The results indicate that a parsimonious model that includes three financial variables, a cash flow, a profitability and a financial leverage variable, yielded an overall correct classification accuracy of 83% one year prior to the failure. In summary, our models can be used to assist investors, creditors, managers, auditors and regulatory agencies in the UK to predict the probability of business failure.

Suggested Citation

  • Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
  • Handle: RePEc:taf:euract:v:13:y:2004:i:3:p:465-497 DOI: 10.1080/0963818042000216811
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0963818042000216811
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:joares:v:23:y:1985:i:1:p:384-401 is not listed on IDEAS
    2. Peel, MJ & Peel, DA & Pope, PF, 1986. "Predicting corporate failure-- Some results for the UK corporate sector," Omega, Elsevier, vol. 14(1), pages 5-12.
    3. J.E. Boritz & D.B. Kennedy & Augusto de Miranda e Albuquerque, 1995. "Predicting Corporate Failure Using a Neural Network Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(2), pages 95-111, June.
    4. Andreas Charitou & Nikos Vafeas, 1998. "The Association Between Operating Cash Flows and Dividend Changes: An Empirical Investigation," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(1&2), pages 225-249.
    5. Nicholas Wilson & Kwee Chong & Michael Peel & A. N. Kolmogorov, 1995. "Neural Network Simulation and the Prediction of Corporate Outcomes: Some Empirical Findings," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 2(1), pages 31-50.
    6. repec:bla:joares:v:23:y:1985:i:1:p:146-160 is not listed on IDEAS
    7. Peel, M. J. & Peel, D. A., 1988. "A multilogit approach to predicting corporate failure--Some evidence for the UK corporate sector," Omega, Elsevier, vol. 16(4), pages 309-318.
    8. Julian R. Franks & Kjell G. Nyborg & Walter N. Torous, 1996. "A Comparison of UK, US and German Insolvency Codes," Financial Management, Financial Management Association, vol. 25(3), Fall.
    9. Warner, Jerold B, 1977. "Bankruptcy Costs: Some Evidence," Journal of Finance, American Finance Association, vol. 32(2), pages 337-347, May.
    10. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, pages 926-947.
    11. Dambolena, Ismael G & Khoury, Sarkis J, 1980. " Ratio Stability and Corporate Failure," Journal of Finance, American Finance Association, vol. 35(4), pages 1017-1026, September.
    12. Taffler, Richard J., 1984. "Empirical models for the monitoring of UK corporations," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 199-227, June.
    13. Johnsen, Thomajean & Melicher, Ronald W., 1994. "Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models," Journal of Economics and Business, Elsevier, pages 269-286.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:euract:v:13:y:2004:i:3:p:465-497. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/REAR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.