IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v54y2019i1d10.1007_s10614-017-9681-9.html
   My bibliography  Save this article

Forecasting Corporate Bankruptcy Using Accrual-Based Models

Author

Listed:
  • Philippe Jardin

    (Edhec Business School)

  • David Veganzones

    (Université de Lille 1)

  • Eric Séverin

    (Université de Lille 1)

Abstract

Financial information has been widely used to design bankruptcy prediction models. All research works that have studied such models assume that financial statements are reliable. However, reality is a bit different. Indeed, firms may tend to present their financial accounts depending on particular circumstances, especially when seeking to change the perception of the risk incurred by their partners, and thus distort or alter some of them. Consequently, one may wonder to what extent such “manipulations”, called earnings management, may influence any model that relies on accounting data. This is why we study how earnings management may affect financial variables and how it can indirectly distort predictions made by failure models. For this purpose, we used a measure that makes it possible to assess potential account manipulations, and not effective manipulations. Our results show that when these distortions are measured and used with other financial variables, models are more accurate than those that solely rely on pure financial data. They also show that the improvement of model accuracy is essentially due to a reduction of type-I error—the costliest error in economic terms.

Suggested Citation

  • Philippe Jardin & David Veganzones & Eric Séverin, 2019. "Forecasting Corporate Bankruptcy Using Accrual-Based Models," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 7-43, June.
  • Handle: RePEc:kap:compec:v:54:y:2019:i:1:d:10.1007_s10614-017-9681-9
    DOI: 10.1007/s10614-017-9681-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9681-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9681-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. du Jardin, Philippe, 2016. "A two-stage classification technique for bankruptcy prediction," European Journal of Operational Research, Elsevier, vol. 254(1), pages 236-252.
    2. Charitou, Andreas & Lambertides, Neophytos & Trigeorgis, Lenos, 2007. "Managerial discretion in distressed firms," The British Accounting Review, Elsevier, vol. 39(4), pages 323-346.
    3. Bergstresser, Daniel & Philippon, Thomas, 2006. "CEO incentives and earnings management," Journal of Financial Economics, Elsevier, vol. 80(3), pages 511-529, June.
    4. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    5. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    6. Bardos, Mireille, 1998. "Detecting the risk of company failure at the Banque de France," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1405-1419, October.
    7. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    8. Ikenberry, David & Lakonishok, Josef & Vermaelen, Theo, 1995. "Market underreaction to open market share repurchases," Journal of Financial Economics, Elsevier, vol. 39(2-3), pages 181-208.
    9. Degeorge, Francois & Patel, Jayendu & Zeckhauser, Richard, 1999. "Earnings Management to Exceed Thresholds," The Journal of Business, University of Chicago Press, vol. 72(1), pages 1-33, January.
    10. Kaplan, Robert S., 1985. "Evidence on the effect of bonus schemes on accounting procedure and accrual decisions," Journal of Accounting and Economics, Elsevier, vol. 7(1-3), pages 109-113, April.
    11. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    12. Barber, Brad M. & Lyon, John D., 1996. "Detecting abnormal operating performance: The empirical power and specification of test statistics," Journal of Financial Economics, Elsevier, vol. 41(3), pages 359-399, July.
    13. Ilia D. Dichev & Douglas J. Skinner, 2002. "Large–Sample Evidence on the Debt Covenant Hypothesis," Journal of Accounting Research, Wiley Blackwell, vol. 40(4), pages 1091-1123, September.
    14. DeFond, Mark L. & Jiambalvo, James, 1994. "Debt covenant violation and manipulation of accruals," Journal of Accounting and Economics, Elsevier, vol. 17(1-2), pages 145-176, January.
    15. Sweeney, Amy Patricia, 1994. "Debt-covenant violations and managers' accounting responses," Journal of Accounting and Economics, Elsevier, vol. 17(3), pages 281-308, May.
    16. Erkki K. Laitinen & Teija Laitinen, 1998. "Cash Management Behavior and Failure Prediction," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(7‐8), pages 893-919, September.
    17. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    18. Kallunki, J. -P. & Martikainen, T., 1999. "Financial failure and managers' accounting responses: Finnish evidence," Journal of Multinational Financial Management, Elsevier, vol. 9(1), pages 15-26, January.
    19. Sunti Tirapat & Aekkachai Nittayagasetwat, 1999. "An Investigation of Thai Listed Firms' Financial Distress Using Macro and Micro Variables," Multinational Finance Journal, Multinational Finance Journal, vol. 3(2), pages 103-125, June.
    20. Rebecca L. Rosner, 2003. "Earnings Manipulation in Failing Firms," Contemporary Accounting Research, John Wiley & Sons, vol. 20(2), pages 361-408, June.
    21. Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.
    22. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    23. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    24. McNichols, Maureen F., 2000. "Research design issues in earnings management studies," Journal of Accounting and Public Policy, Elsevier, vol. 19(4-5), pages 313-345.
    25. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    26. Lensberg, Terje & Eilifsen, Aasmund & McKee, Thomas E., 2006. "Bankruptcy theory development and classification via genetic programming," European Journal of Operational Research, Elsevier, vol. 169(2), pages 677-697, March.
    27. Beaver, Wh, 1968. "Market Prices, Financial Ratios, And Prediction Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 179-192.
    28. Mensah, Ym, 1984. "An Examination Of The Stationarity Of Multivariate Bankruptcy Prediction Models - A Methodological Study," Journal of Accounting Research, Wiley Blackwell, vol. 22(1), pages 380-395.
    29. Laitinen, Erkki K. & Laitinen, Teija, 2000. "Bankruptcy prediction: Application of the Taylor's expansion in logistic regression," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 327-349.
    30. Dambolena, Ismael G & Khoury, Sarkis J, 1980. "Ratio Stability and Corporate Failure," Journal of Finance, American Finance Association, vol. 35(4), pages 1017-1026, September.
    31. Jones, Jj, 1991. "Earnings Management During Import Relief Investigations," Journal of Accounting Research, Wiley Blackwell, vol. 29(2), pages 193-228.
    32. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    33. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    34. Dong Zhao & Chunyu Huang & Yan Wei & Fanhua Yu & Mingjing Wang & Huiling Chen, 2017. "An Effective Computational Model for Bankruptcy Prediction Using Kernel Extreme Learning Machine Approach," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 325-341, February.
    35. Nicholas Wilson & Kwee Chong & Michael Peel & A. N. Kolmogorov, 1995. "Neural Network Simulation and the Prediction of Corporate Outcomes: Some Empirical Findings," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 2(1), pages 31-50.
    36. Juan García Lara & Beatriz Osma & Evi Neophytou, 2009. "Earnings quality in ex‐post failed firms," Accounting and Business Research, Taylor & Francis Journals, vol. 39(2), pages 119-138.
    37. Juliana Yim & Heather Mitchell, 2005. "A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 15(1), pages 73-93, January-A.
    38. DeAngelo, Harry & DeAngelo, Linda & Skinner, Douglas J., 1994. "Accounting choice in troubled companies," Journal of Accounting and Economics, Elsevier, vol. 17(1-2), pages 113-143, January.
    39. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    40. Kothari, S.P. & Leone, Andrew J. & Wasley, Charles E., 2005. "Performance matched discretionary accrual measures," Journal of Accounting and Economics, Elsevier, vol. 39(1), pages 163-197, February.
    41. K. Peasnell & P. Pope & S. Young, 2000. "Detecting earnings management using cross-sectional abnormal accruals models," Accounting and Business Research, Taylor & Francis Journals, vol. 30(4), pages 313-326.
    42. Healy, Paul M., 1985. "The effect of bonus schemes on accounting decisions," Journal of Accounting and Economics, Elsevier, vol. 7(1-3), pages 85-107, April.
    43. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    44. Erkki K. Laitinen & Teija Laitinen, 1998. "Cash Management Behavior and Failure Prediction," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 25(7&8), pages 893-919.
    45. Burgstahler, David & Dichev, Ilia, 1997. "Earnings management to avoid earnings decreases and losses," Journal of Accounting and Economics, Elsevier, vol. 24(1), pages 99-126, December.
    46. Perry, Susan E. & Williams, Thomas H., 1994. "Earnings management preceding management buyout offers," Journal of Accounting and Economics, Elsevier, vol. 18(2), pages 157-179, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    2. Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.
    3. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    2. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    3. Dechow, Patricia & Ge, Weili & Schrand, Catherine, 2010. "Understanding earnings quality: A review of the proxies, their determinants and their consequences," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 344-401, December.
    4. Jun Hyeok Choi & Saerona Kim & Dong-Hoon Yang & Kwanghee Cho, 2021. "Can Corporate Social Responsibility Decrease the Negative Influence of Financial Distress on Accounting Quality?," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
    5. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    6. Juan García Lara & Beatriz Osma & Evi Neophytou, 2009. "Earnings quality in ex‐post failed firms," Accounting and Business Research, Taylor & Francis Journals, vol. 39(2), pages 119-138.
    7. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    8. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    9. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    10. Dauth, Tobias & Pronobis, Paul & Schmid, Stefan, 2017. "Exploring the link between internationalization of top management and accounting quality: The CFO’s international experience matters," International Business Review, Elsevier, vol. 26(1), pages 71-88.
    11. Nagar, Neerav & Sen, Kaustav, 2016. "Earnings Management Strategies during Financial Distress," IIMA Working Papers WP2016-02-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    13. Khushbu Agrawal & Chanchal Chatterjee, 2015. "Earnings Management and Financial Distress: Evidence from India," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 140-154, October.
    14. Ioannis Dokas & Christos Leontidis & Nicolaos Eriotis & Konstantinos Hazakis, 2021. "Earnings Management. An overview of the relative literature," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 25-55.
    15. Sami Ben Jabeur & Youssef Fahmi, 2014. "Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative," Working Papers 2014-317, Department of Research, Ipag Business School.
    16. Sondes Draief & Adel Chouaya, 2012. "Effet de la gestion comptable et réelle des résultats sur le coût de la dette : analyse avant et après SOX," Post-Print hal-00691020, HAL.
    17. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    18. Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.
    19. Daniel, Naveen D. & Denis, David J. & Naveen, Lalitha, 2008. "Do firms manage earnings to meet dividend thresholds," Journal of Accounting and Economics, Elsevier, vol. 45(1), pages 2-26, March.
    20. Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:54:y:2019:i:1:d:10.1007_s10614-017-9681-9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.