IDEAS home Printed from https://ideas.repec.org/p/ipg/wpaper/2014-317.html
   My bibliography  Save this paper

Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative

Author

Listed:
  • Sami Ben Jabeur
  • Youssef Fahmi

Abstract

Résumé: L’article s’inscrit dans le cadre des travaux de recherche sur les modèles de prévision de faillites, pouvant être utilisés pour détecter les problèmes financiers des PME. Dans ce travail, nous avons appliqué l’approche discriminante et l’approc

Suggested Citation

  • Sami Ben Jabeur & Youssef Fahmi, 2014. "Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative," Working Papers 2014-317, Department of Research, Ipag Business School.
  • Handle: RePEc:ipg:wpaper:2014-317
    as

    Download full text from publisher

    File URL: http://www.ipag.fr/wp-content/uploads/recherche/WP/IPAG_WP_2014_317.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Platt, Harlan D. & Platt, Marjorie B., 1991. "A note on the use of industry-relative ratios in bankruptcy prediction," Journal of Banking & Finance, Elsevier, vol. 15(6), pages 1183-1194, December.
    2. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    3. Bardos, Mireille, 1998. "Detecting the risk of company failure at the Banque de France," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1405-1419, October.
    4. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    5. Altman, Edward I, 1984. " A Further Empirical Investigation of the Bankruptcy Cost Question," Journal of Finance, American Finance Association, vol. 39(4), pages 1067-1089, September.
    6. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    7. Altman, Edward I., 1984. "The success of business failure prediction models : An international survey," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 171-198, June.
    8. Bardos, M., 2005. "Les scores de la Banque de France : leur développement, leurs applications, leur maintenance," Bulletin de la Banque de France, Banque de France, issue 144, pages 63-73.
    9. Nguyen, Danh V. & Rocke, D.M.David M., 2004. "On partial least squares dimension reduction for microarray-based classification: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 407-425, June.
    10. repec:bla:joares:v:10:y:1972:i:1:p:167-179 is not listed on IDEAS
    11. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    12. Pompe, Paul P.M. & Bilderbeek, Jan, 2005. "The prediction of bankruptcy of small- and medium-sized industrial firms," Journal of Business Venturing, Elsevier, vol. 20(6), pages 847-868, November.
    13. Opler, Tim C & Titman, Sheridan, 1994. " Financial Distress and Corporate Performance," Journal of Finance, American Finance Association, vol. 49(3), pages 1015-1040, July.
    14. Catherine Refait, 2004. "La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux," Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
    15. Laitinen, Erkki K. & Laitinen, Teija, 2000. "Bankruptcy prediction: Application of the Taylor's expansion in logistic regression," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 327-349.
    16. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    17. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    18. Bastien, Philippe & Vinzi, Vincenzo Esposito & Tenenhaus, Michel, 2005. "PLS generalised linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 17-46, January.
    19. Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
    20. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    21. Chou, Hsin-I & Li, Hui & Yin, Xiangkang, 2010. "The effects of financial distress and capital structure on the work effort of outside directors," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 300-312, June.
    22. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. " Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipg:wpaper:2014-317. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ingmar Schumacher). General contact details of provider: http://edirc.repec.org/data/ipagpfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.