IDEAS home Printed from https://ideas.repec.org/a/mth/jad888/v5y2019i3p37-46.html
   My bibliography  Save this article

Understanding the Connection of Performance and Z-Scores for Manufacturing Firms in South Korea

Author

Listed:
  • Foo See Liang
  • Shaak Pathak

Abstract

South Korea is a key leading economy in the Asia Pacific region. This study examines the relationship between the financial health, as measured by the Altman Z-Score, and corporate performance, as measured by the Return on Equity (ROE), of listed manufacturing companies in this market. A linear regression has been conducted between these variables to determine the magnitude and direction of their relationships. The trends of Z-Scores over a five-year period have also been analysed. The analysis covers the period from 2013 to 2017 (inclusive) and yields a statistically positive correlation between ROE and the Z-Score for the market. South Korea registered moderate mean and median Z-Scores. These findings further support the strong economic position of this market as an Asian giant.

Suggested Citation

  • Foo See Liang & Shaak Pathak, 2019. "Understanding the Connection of Performance and Z-Scores for Manufacturing Firms in South Korea," Journal of Asian Development, Macrothink Institute, vol. 5(3), pages 37-46, November.
  • Handle: RePEc:mth:jad888:v:5:y:2019:i:3:p:37-46
    as

    Download full text from publisher

    File URL: http://www.macrothink.org/journal/index.php/jad/article/view/15555/12172
    Download Restriction: no

    File URL: http://www.macrothink.org/journal/index.php/jad/article/view/15555
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    2. Ilhan Meric & Christine Lentz & Sherry F. Li & Gulser Meric, 2014. "A Comparison Of The Financial Characteristics Of Hong Kong And Singapore Manufacturing Firms," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 8(3), pages 31-37.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    5. Vineet Agarwal & Richard Taffler, 2007. "Twenty‐five years of the Taffler z‐score model: Does it really have predictive ability?," Accounting and Business Research, Taylor & Francis Journals, vol. 37(4), pages 285-300.
    6. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    7. Muriel Perez, 2006. "Artificial Neural Networks And Bankruptcy Forecasting : A State Of The Art," Post-Print halshs-00522129, HAL.
    8. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    9. Mathius Tandiontong, 2017. "The Influence of Financial Distress Using Altman Z-Score, The Beta of Stocks and Inflation To The Stock Return," GATR Journals jfbr126, Global Academy of Training and Research (GATR) Enterprise.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarsisius Renald Suganda & Jungmu Kim, 2023. "An Empirical Study on the Relationship between Corporate Social Responsibility and Default Risk: Evidence in Korea," Sustainability, MDPI, vol. 15(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    2. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    3. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    4. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    5. Ming-Fu Hsu & Ying-Shao Hsin & Fu-Jiing Shiue, 2022. "Business analytics for corporate risk management and performance improvement," Annals of Operations Research, Springer, vol. 315(2), pages 629-669, August.
    6. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    7. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    8. Jiaming Liu & Chong Wu, 2017. "Dynamic forecasting of financial distress: the hybrid use of incremental bagging and genetic algorithm—empirical study of Chinese listed corporations," Risk Management, Palgrave Macmillan, vol. 19(1), pages 32-52, February.
    9. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    10. M. A. Lagesh & Maram Srikanth & Debashis Acharya, 2018. "Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms," Global Business Review, International Management Institute, vol. 19(5), pages 1261-1274, October.
    11. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    12. Catherine Refait, 2000. "Estimation du risque de défaut par une modélisation stochastique du bilan : Application à des firmes industrielles françaises," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03718527, HAL.
    13. Esteban Alfaro Cortés & Matías Gámez Martínez & Noelia García Rubio, 2007. "Multiclass Corporate Failure Prediction by Adaboost.M1," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(3), pages 301-312, August.
    14. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    16. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
    17. Fernando García & Francisco Guijarro & Ismael Moya, 2013. "Monitoring credit risk in the social economy sector by means of a binary goal programming model," Service Business, Springer;Pan-Pacific Business Association, vol. 7(3), pages 483-495, September.
    18. Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
    19. Harlan D. Platt & Marjorie B. Platt, 2008. "Financial Distress Comparison Across Three Global Regions," JRFM, MDPI, vol. 1(1), pages 1-34, December.
    20. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mth:jad888:v:5:y:2019:i:3:p:37-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Technical Support Office (email available below). General contact details of provider: http://www.macrothink.org/journal/index.php/jad .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.