IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4948-d1666267.html
   My bibliography  Save this article

Predicting Business Failure with the XGBoost Algorithm: The Role of Environmental Risk

Author

Listed:
  • Mariano Romero Martínez

    (Department of Accounting, Faculty of Economics, Tarongers Campus, University of Valencia, 46022 Valencia, Spain)

  • Pedro Carmona Ibáñez

    (Department of Accounting, Faculty of Economics, Tarongers Campus, University of Valencia, 46022 Valencia, Spain)

  • Julián Martínez Vargas

    (Department of Accounting, Faculty of Economics, Tarongers Campus, University of Valencia, 46022 Valencia, Spain)

Abstract

This study addresses the increasing emphasis on sustainability and the importance of understanding how environmental risk influences business failure, a factor unexplored in traditional financial prediction models. Environmental risk, or environmental financial exposure, refers to the potential percentage of a company’s revenue at risk due to the environmental damage it causes. Previous research has not sufficiently integrated environmental variables into failure prediction models. This study aims to determine whether environmental risk significantly predicts business failure and how it interacts with conventional financial indicators. Utilizing data from 971 Spanish cooperative companies in 2022, including financial ratios, the VADIS bankruptcy propensity indicator, and the TRUCAM environmental risk score, the study employs the Extreme Gradient Boosting (XGBoost) machine learning algorithm, chosen for its robustness in handling multicollinearity and nonlinear relationships. The methodology involves training and validation samples, cross-validation for hyperparameter tuning, and interpretability techniques such as variable importance analysis and partial dependence plots. Results demonstrate that the variable related to environmental risk (TRUCAM) ranks among the top predictors, alongside liquidity, profitability, and labor costs, with higher TRUCAM values correlating positively with failure risk, underscoring the importance of sustainable cost management. These findings suggest that firms facing substantial environmental risk are more prone to financial distress. By incorporating this environmental variable into a machine learning framework, this work contributes to the interaction between sustainability practices and corporate viability.

Suggested Citation

  • Mariano Romero Martínez & Pedro Carmona Ibáñez & Julián Martínez Vargas, 2025. "Predicting Business Failure with the XGBoost Algorithm: The Role of Environmental Risk," Sustainability, MDPI, vol. 17(11), pages 1-32, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4948-:d:1666267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Freeman, R. Edward, 1994. "The Politics of Stakeholder Theory: Some Future Directions1," Business Ethics Quarterly, Cambridge University Press, vol. 4(4), pages 409-421, October.
    2. Nooraslinda Abdul Aris & Marziana Madah Marzuki & Rohana Othman & Safawi Abdul Rahman & Norashikin Hj Ismail, 2018. "Designing indicators for cooperative sustainability: the Malaysian perspective," Social Responsibility Journal, Emerald Group Publishing Limited, vol. 14(1), pages 226-248, March.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    5. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 18(1), pages 109-131.
    6. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 22, pages 59-82.
    7. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    8. Mozas-Moral, Adoración & Fernández-Uclés, Domingo & Medina-Viruel, Miguel Jesús & Bernal-Jurado, Enrique, 2021. "The role of the SDGs as enhancers of the performance of Spanish wine cooperatives," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    2. Pablo de Llano Monelos & Manuel Rodríguez López & Carlos Piñeiro Sánchez, 2013. "Bankruptcy Prediction Models in Galician companies. Application of Parametric Methodologies and Artificial Intelligence," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 117-136.
    3. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    4. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    5. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    6. Esteban Alfaro Cortés & Matías Gámez Martínez & Noelia García Rubio, 2007. "Multiclass Corporate Failure Prediction by Adaboost.M1," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(3), pages 301-312, August.
    7. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    8. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    9. Fernando García & Francisco Guijarro & Ismael Moya, 2013. "Monitoring credit risk in the social economy sector by means of a binary goal programming model," Service Business, Springer;Pan-Pacific Business Association, vol. 7(3), pages 483-495, September.
    10. Harlan D. Platt & Marjorie B. Platt, 2008. "Financial Distress Comparison Across Three Global Regions," JRFM, MDPI, vol. 1(1), pages 1-34, December.
    11. Correia, Maria, 2025. "Accounting and corporate failure: the evolving role of accounting information in bankruptcy prediction," LSE Research Online Documents on Economics 128340, London School of Economics and Political Science, LSE Library.
    12. Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
    13. Ying Zhou & Xia Lin & Guotai Chi & Peng Jin & Mengtong Li, 2024. "EWT‐SMOTE to improve default prediction performance in imbalanced data: Analysis of Chinese data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 615-643, April.
    14. Barniv, Ran & Mehrez, Abraham & Kline, Douglas M., 2000. "Confidence intervals for controlling the probability of bankruptcy," Omega, Elsevier, vol. 28(5), pages 555-565, October.
    15. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
    16. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    17. repec:kap:iaecre:v:13:y:2007:i:3:p:301-312 is not listed on IDEAS
    18. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
    19. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    20. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    21. Samuray Karaca & Ercan Özen, 2017. "Financial Failure Estimation of Companies in BIST Tourism Index by Altman Model and its Effect on Market Prices," BRAND. Broad Research in Accounting, Negotiation, and Distribution, EduSoft Publishing, vol. 8(2), pages 11-23.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4948-:d:1666267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.