IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1275-d393892.html
   My bibliography  Save this article

Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models

Author

Listed:
  • Dawen Yan

    (School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China)

  • Guotai Chi

    (School of Economics and Management, Dalian University of Technology, Dalian 116024, China)

  • Kin Keung Lai

    (College of Economics, Shenzhen University, Shenzhen 518060, China)

Abstract

In this paper, we propose a new framework of a financial early warning system through combining the unconstrained distributed lag model (DLM) and widely used financial distress prediction models such as the logistic model and the support vector machine (SVM) for the purpose of improving the performance of an early warning system for listed companies in China. We introduce simultaneously the 3~5-period-lagged financial ratios and macroeconomic factors in the consecutive time windows t − 3, t − 4 and t − 5 to the prediction models; thus, the influence of the early continued changes within and outside the company on its financial condition is detected. Further, by introducing lasso penalty into the logistic-distributed lag and SVM-distributed lag frameworks, we implement feature selection and exclude the potentially redundant factors, considering that an original long list of accounting ratios is used in the financial distress prediction context. We conduct a series of comparison analyses to test the predicting performance of the models proposed by this study. The results show that our models outperform logistic, SVM, decision tree and neural network (NN) models in a single time window, which implies that the models incorporating indicator data in multiple time windows convey more information in terms of financial distress prediction when compared with the existing singe time window models.

Suggested Citation

  • Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1275-:d:393892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hernandez Tinoco, Mario & Holmes, Phil & Wilson, Nick, 2018. "Polytomous response financial distress models: The role of accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 276-289.
    2. Almamy, Jeehan & Aston, John & Ngwa, Leonard N., 2016. "An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK," Journal of Corporate Finance, Elsevier, vol. 36(C), pages 278-285.
    3. Maldonado, Sebastián & Pérez, Juan & Bravo, Cristián, 2017. "Cost-based feature selection for Support Vector Machines: An application in credit scoring," European Journal of Operational Research, Elsevier, vol. 261(2), pages 656-665.
    4. Inekwe, John Nkwoma & Jin, Yi & Valenzuela, Ma. Rebecca, 2018. "The effects of financial distress: Evidence from US GDP growth," Economic Modelling, Elsevier, vol. 72(C), pages 8-21.
    5. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    6. Ke Wang & Darrell Duffie, 2004. "Multi-Period Corporate Failure Prediction With Stochastic Covariates," Econometric Society 2004 Far Eastern Meetings 747, Econometric Society.
    7. Maria Kovacova & Tomas Kliestik & Katarina Valaskova & Pavol Durana & Zuzana Juhaszova, 2019. "Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 10(4), pages 743-772, December.
    8. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    9. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    10. David A. Hensher & Stewart Jones & William H. Greene, 2007. "An Error Component Logit Analysis of Corporate Bankruptcy and Insolvency Risk in Australia," The Economic Record, The Economic Society of Australia, vol. 83(260), pages 86-103, March.
    11. Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.
    12. Yi Jiang & Stewart Jones, 2018. "Corporate distress prediction in China: a machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(4), pages 1063-1109, December.
    13. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    14. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    15. Westgaard, Sjur & van der Wijst, Nico, 2001. "Default probabilities in a corporate bank portfolio: A logistic model approach," European Journal of Operational Research, Elsevier, vol. 135(2), pages 338-349, December.
    16. Purnanandam, Amiyatosh, 2008. "Financial distress and corporate risk management: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 87(3), pages 706-739, March.
    17. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    18. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    19. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    20. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    21. Liang, Deron & Lu, Chia-Chi & Tsai, Chih-Fong & Shih, Guan-An, 2016. "Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study," European Journal of Operational Research, Elsevier, vol. 252(2), pages 561-572.
    22. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    23. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    24. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wangwang Yan & Jing Ba & Taihua Xu & Hualong Yu & Jinlong Shi & Bin Han, 2022. "Beam-Influenced Attribute Selector for Producing Stable Reduct," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    2. Ahmed Amer Abdul-Kareem & Zaki T. Fayed & Sherine Rady & Salsabil Amin El-Regaily & Bashar M. Nema, 2024. "Forecasting Financial Investment Firms’ Insolvencies Empowered with Enhanced Predictive Modeling," JRFM, MDPI, vol. 17(9), pages 1-21, September.
    3. He Huang & Liwei Zhong & Ting Shen & Huixin Wang, 2022. "Performance prediction and optimization for healthcare enterprises in the context of the COVID-19 pandemic: an intelligent DEA-SVM model," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3778-3791, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    2. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    3. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    4. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    5. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    6. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    7. Fernando García & Francisco Guijarro & Ismael Moya, 2013. "Monitoring credit risk in the social economy sector by means of a binary goal programming model," Service Business, Springer;Pan-Pacific Business Association, vol. 7(3), pages 483-495, September.
    8. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    9. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    10. Cakir, Murat, 2005. "Firma Başarısızlığının Dinamiklerinin Belirlenmesinde Makina Öğrenmesi Teknikleri: Ampirik Uygulamalar ve Karşılaştırmalı Analiz [Machine Learning Techniques in Determining the Dynamics of Corporat," MPRA Paper 55975, University Library of Munich, Germany.
    11. Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
    12. Jones, Stewart & Wang, Tim, 2019. "Predicting private company failure: A multi-class analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 161-188.
    13. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    14. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    15. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    16. Aaro Hazak & Kadri Männasoo, 2007. "Indicators of corporate default : an EU based empirical study," Bank of Estonia Working Papers 2007-10, Bank of Estonia, revised 04 Sep 2007.
    17. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    18. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    19. Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
    20. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1275-:d:393892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.