IDEAS home Printed from
   My bibliography  Save this article

Predicting private company failure: A multi-class analysis


  • Jones, Stewart
  • Wang, Tim


This study utilizes an advanced machine learning method known as TreeNet® (Salford Systems, 2017) to predict a variety of private company failure states, ranging from binary settings (i.e. failed vs non-failed) to more complex multi-class settings with up to five states of failure. Based on a large global sample, TreeNet® proved to be a significantly better predictor of private company failure than conventional models such as logistic regression. While the out-of-sample predictive performance of TreeNet® is best in binary settings, the model also produces strong area under the ROC curve (AUC) results for the multi-class models. We also find that the predictive performance of financial variables is significantly enhanced when combined with external risk factors such as macro-economic variables and other non-financial measures. The results of this study have several implications for the private company failure literature and the usefulness of machine learning methods in accounting and finance more generally.

Suggested Citation

  • Jones, Stewart & Wang, Tim, 2019. "Predicting private company failure: A multi-class analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 161-188.
  • Handle: RePEc:eee:intfin:v:61:y:2019:i:c:p:161-188
    DOI: 10.1016/j.intfin.2019.03.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. repec:bla:jomstd:v:31:y:1994:i:5:p:737-760 is not listed on IDEAS
    2. repec:bla:abacus:v:53:y:2017:i:2:p:159-179 is not listed on IDEAS
    3. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    4. Everett, Jim & Watson, John, 1998. "Small Business Failure and External Risk Factors," Small Business Economics, Springer, vol. 11(4), pages 371-390, December.
    5. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    6. repec:bla:abacus:v:54:y:2018:i:2:p:133-135 is not listed on IDEAS
    7. Koopman, Siem Jan & Kräussl, Roman & Lucas, André & Monteiro, André B., 2009. "Credit cycles and macro fundamentals," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 42-54, January.
    8. repec:bla:abacus:v:53:y:2017:i:2:p:240-272 is not listed on IDEAS
    9. repec:bla:abacus:v:54:y:2018:i:2:p:227-246 is not listed on IDEAS
    10. David A. Hensher & Stewart Jones & William H. Greene, 2007. "An Error Component Logit Analysis of Corporate Bankruptcy and Insolvency Risk in Australia," The Economic Record, The Economic Society of Australia, vol. 83(260), pages 86-103, March.
    11. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    12. Jones,Stewart & Hensher,David A. (ed.), 2008. "Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction," Cambridge Books, Cambridge University Press, number 9780521689540, December.
    13. Thomas R. Dyckman, 2016. "Significance Testing: We Can Do Better," Abacus, Accounting Foundation, University of Sydney, vol. 52(2), pages 319-342, June.
    14. David Johnstone, 2016. "Advances in Equity Valuation: Research on Accounting Valuation," Abacus, Accounting Foundation, University of Sydney, vol. 52(1), pages 1-4, March.
    15. James Ohlson & Erik Johannesson, 2016. "Equity Value as a Function of (eps1, eps2, dps1, bvps, beta): Concepts and Realities," Abacus, Accounting Foundation, University of Sydney, vol. 52(1), pages 70-99, March.
    16. Thomas R. Dyckman & Stephen A. Zeff, 2015. "Accounting Research: Past, Present, and Future," Abacus, Accounting Foundation, University of Sydney, vol. 51(4), pages 511-524, December.
    17. repec:bla:jbfnac:v:44:y:2017:i:1-2:p:3-34 is not listed on IDEAS
    18. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    19. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(2), pages 1477-1493, March.
    20. repec:bla:abacus:v:52:y:2016:i:4:p:611-618 is not listed on IDEAS
    21. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    22. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    23. James A. Ohlson, 2015. "Accounting Research and Common Sense," Abacus, Accounting Foundation, University of Sydney, vol. 51(4), pages 525-535, December.
    24. Bhimani, Alnoor & Gulamhussen, Mohamed Azzim & Lopes, Samuel Da-Rocha, 2010. "Accounting and non-accounting determinants of default: An analysis of privately-held firms," Journal of Accounting and Public Policy, Elsevier, vol. 29(6), pages 517-532, November.
    25. Mramor, Dusan & Valentincic, Aljosa, 2003. "Forecasting the liquidity of very small private companies," Journal of Business Venturing, Elsevier, vol. 18(6), pages 745-771, November.
    26. repec:bla:jfinan:v:72:y:2017:i:4:p:1399-1440 is not listed on IDEAS
    27. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    28. Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
    29. Jones,Stewart & Hensher,David A. (ed.), 2008. "Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction," Cambridge Books, Cambridge University Press, number 9780521869287, December.
    30. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    31. repec:bla:joares:v:22:y:1984:i::p:59-82 is not listed on IDEAS
    32. repec:spr:reaccs:v:22:y:2017:i:3:d:10.1007_s11142-017-9407-1 is not listed on IDEAS
    33. repec:bla:abacus:v:53:y:2017:i:4:p:485-512 is not listed on IDEAS
    34. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    35. repec:bla:abacus:v:52:y:2016:i:4:p:619-684 is not listed on IDEAS
    36. Julio Pindado & Luis F. Rodrigues, 2004. "Parsimonious Models of Financial Insolvency in Small Companies," Small Business Economics, Springer, vol. 22(1), pages 51-66, February.
    37. repec:bla:abacus:v:53:y:2017:i:1:p:59-93 is not listed on IDEAS
    38. repec:bla:abacus:v:54:y:2018:i:4:p:524-546 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item


    Private company failures; Multi-class; Machine learning; Gradient boosting; Logit; Macroeconomic variables; Accounting-based indicators;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:61:y:2019:i:c:p:161-188. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.