IDEAS home Printed from https://ideas.repec.org/a/bit/bsrysr/v5y2014i2p23-45.html
   My bibliography  Save this article

Inability of Gearing-Ratio as Predictor for Early Warning Systems

Author

Listed:
  • Situm Mario

    (Fachhochschule Kufstein Tirol Bildungs GmbH, University of Applies Sciences, Austria)

Abstract

Background: Research in business failure and insolvency prediction provides numerous potential variables, which are in the position to differentiate between solvent and insolvent firms. Nevertheless, not all of them have the same discriminatory power, and therefore their general applicability as crisis indicators within early warning systems seems questionable. Objectives: The paper aims to demonstrate that gearing-ratio is not an appropriate predictor for firm failures/bankruptcies. Methods/Approach: The first and the second order derivatives for the gearing-ratio formula were computed and mathematically analysed. Based on these results an interpretation was given and the suitability of gearing-ratio as a discriminator within business failure prediction models was discussed. These theoretical findings were then empirically tested using financial figures from financial statements of Austrian companies for the observation period between 2008 and 2010. Results: The theoretical assumptions showed that gearing-ratio is not a suitable predictor for early warning systems. This finding was confirmed with empirical data. Conclusions: The inclusion of gearing-ratio within business failure prediction models is not able to provide early warning signals and should therefore be ignored in future model building attempts.

Suggested Citation

  • Situm Mario, 2014. "Inability of Gearing-Ratio as Predictor for Early Warning Systems," Business Systems Research, Sciendo, vol. 5(2), pages 23-45, September.
  • Handle: RePEc:bit:bsrysr:v:5:y:2014:i:2:p:23-45
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/bsrj.2041.5.issue-2/bsrj-2014-0008/bsrj-2014-0008.xml?format=INT
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jorge Dietrich & F. J. Arcelus & G. Srinivasan, 2005. "Predicting financial failure: some evidence from new brunswick agricultural co-ops," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 76(2), pages 179-194, June.
    2. repec:wsi:rpbfmp:v:09:y:2006:i:02:n:s0219091506000744 is not listed on IDEAS
    3. repec:bla:joares:v:23:y:1985:i:1:p:384-401 is not listed on IDEAS
    4. J. C. Neves & A. Vieira, 2006. "Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization," European Accounting Review, Taylor & Francis Journals, vol. 15(2), pages 253-271.
    5. Hackbarth, Dirk & Miao, Jianjun & Morellec, Erwan, 2006. "Capital structure, credit risk, and macroeconomic conditions," Journal of Financial Economics, Elsevier, vol. 82(3), pages 519-550, December.
    6. Leland, Hayne E & Toft, Klaus Bjerre, 1996. " Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," Journal of Finance, American Finance Association, vol. 51(3), pages 987-1019, July.
    7. John W. Pacey & Toan M. Pham, 1990. "The Predictiveness of Bankruptcy Models: Methodological Problems and Evidence," Australian Journal of Management, Australian School of Business, vol. 15(2), pages 315-337, December.
    8. Juliana Yim & Heather Mitchell, 2007. "Predicting Financial Distress In The Australian Financial Service Industry," Australian Economic Papers, Wiley Blackwell, vol. 46(4), pages 375-388, December.
    9. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    10. Hubert Ooghe & Christophe Spaenjers, 2010. "A note on performance measures for business failure prediction models," Applied Economics Letters, Taylor & Francis Journals, vol. 17(1), pages 67-70, January.
    11. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    12. repec:bla:joares:v:4:y:1966:i::p:71-111 is not listed on IDEAS
    13. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(02), pages 1477-1493, March.
    14. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    15. Chae Woo Nam & Tong Suk Kim & Nam Jung Park & Hoe Kyung Lee, 2008. "Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 493-506.
    16. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    17. Bi-Huei Tsai, 2013. "An Early Warning System of Financial Distress Using Multinomial Logit Models and a Bootstrapping Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S2), pages 43-69, March.
    18. Christopher A. Hennessy & Toni M. Whited, 2005. "Debt Dynamics," Journal of Finance, American Finance Association, vol. 60(3), pages 1129-1165, June.
    19. du Jardin, Philippe, 2009. "Bankruptcy prediction models: How to choose the most relevant variables?," MPRA Paper 44380, University Library of Munich, Germany.
    20. Li-Chiu Chi & Tseng-Chung Tang, 2006. "Bankruptcy Prediction: Application of Logit Analysis in Export Credit Risks," Australian Journal of Management, Australian School of Business, vol. 31(1), pages 17-27, June.
    21. Laitinen, Erkki K. & Laitinen, Teija, 2000. "Bankruptcy prediction: Application of the Taylor's expansion in logistic regression," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 327-349.
    22. Dambolena, Ismael G & Khoury, Sarkis J, 1980. " Ratio Stability and Corporate Failure," Journal of Finance, American Finance Association, vol. 35(4), pages 1017-1026, September.
    23. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    24. Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
    25. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    26. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. " Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    capital structure; gearing-ratio; business failure prediction; crisis indicators;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bit:bsrysr:v:5:y:2014:i:2:p:23-45. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.sciendo.com/services/journals .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.