IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i2p490-499.html
   My bibliography  Save this article

Subagging for credit scoring models

Author

Listed:
  • Paleologo, Giuseppe
  • Elisseeff, André
  • Antonini, Gianluca

Abstract

The logistic regression framework has been for long time the most used statistical method when assessing customer credit risk. Recently, a more pragmatic approach has been adopted, where the first issue is credit risk prediction, instead of explanation. In this context, several classification techniques have been shown to perform well on credit scoring, such as support vector machines among others. While the investigation of better classifiers is an important research topic, the specific methodology chosen in real world applications has to deal with the challenges arising from the real world data collected in the industry. Such data are often highly unbalanced, part of the information can be missing and some common hypotheses, such as the i.i.d. one, can be violated. In this paper we present a case study based on a sample of IBM Italian customers, which presents all the challenges mentioned above. The main objective is to build and validate robust models, able to handle missing information, class unbalancedness and non-iid data points. We define a missing data imputation method and propose the use of an ensemble classification technique, subagging, particularly suitable for highly unbalanced data, such as credit scoring data. Both the imputation and subagging steps are embedded in a customized cross-validation loop, which handles dependencies between different credit requests. The methodology has been applied using several classifiers (kernel support vector machines, nearest neighbors, decision trees, Adaboost) and their subagged versions. The use of subagging improves the performance of the base classifier and we will show that subagging decision trees achieve better performance, still keeping the model simple and reasonably interpretable.

Suggested Citation

  • Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:490-499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00153-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    2. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    3. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    4. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    2. João A. Bastos, 2022. "Predicting Credit Scores with Boosted Decision Trees," Forecasting, MDPI, vol. 4(4), pages 1-11, November.
    3. TOBBACK, Ellen & MARTENS, David, 2017. "Retail credit scoring using fine-grained payment data," Working Papers 2017011, University of Antwerp, Faculty of Business and Economics.
    4. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    5. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    6. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    7. Liao, Jui-Jung & Shih, Ching-Hui & Chen, Tai-Feng & Hsu, Ming-Fu, 2014. "An ensemble-based model for two-class imbalanced financial problem," Economic Modelling, Elsevier, vol. 37(C), pages 175-183.
    8. Dejaeger, Karel & Goethals, Frank & Giangreco, Antonio & Mola, Lapo & Baesens, Bart, 2012. "Gaining insight into student satisfaction using comprehensible data mining techniques," European Journal of Operational Research, Elsevier, vol. 218(2), pages 548-562.
    9. Przemys{l}aw Biecek & Marcin Chlebus & Janusz Gajda & Alicja Gosiewska & Anna Kozak & Dominik Ogonowski & Jakub Sztachelski & Piotr Wojewnik, 2021. "Enabling Machine Learning Algorithms for Credit Scoring -- Explainable Artificial Intelligence (XAI) methods for clear understanding complex predictive models," Papers 2104.06735, arXiv.org.
    10. B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
    11. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    12. Stefan Lessmann & Stefan Voß, 2010. "Customer-Centric Decision Support," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 79-93, April.
    13. Jian Shi & Benlian Xu, 2016. "Credit Scoring by Fuzzy Support Vector Machines with a Novel Membership Function," JRFM, MDPI, vol. 9(4), pages 1-10, November.
    14. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Documents de travail du Centre d'Economie de la Sorbonne 16026, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
    16. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    17. Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
    18. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01314553, HAL.
    19. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    20. Zhang, Zhiwang & Gao, Guangxia & Shi, Yong, 2014. "Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors," European Journal of Operational Research, Elsevier, vol. 237(1), pages 335-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:490-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.