IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i1d10.1057_jors.2008.171.html
   My bibliography  Save this article

50 years of data mining and OR: upcoming trends and challenges

Author

Listed:
  • B Baesens

    (K.U. Leuven
    University of Southampton)

  • C Mues

    (University of Southampton)

  • D Martens

    (K.U. Leuven
    University College Ghent)

  • J Vanthienen

    (K.U. Leuven)

Abstract

Data mining involves extracting interesting patterns from data and can be found at the heart of operational research (OR), as its aim is to create and enhance decision support systems. Even in the early days, some data mining approaches relied on traditional OR methods such as linear programming and forecasting, and modern data mining methods are based on a wide variety of OR methods including linear and quadratic optimization, genetic algorithms and concepts based on artificial ant colonies. The use of data mining has rapidly become widespread, with applications in domains ranging from credit risk, marketing, and fraud detection to counter-terrorism. In all of these, data mining is increasingly playing a key role in decision making. Nonetheless, many challenges still need to be tackled, ranging from data quality issues to the problem of how to include domain experts' knowledge, or how to monitor model performance. In this paper, we outline a series of upcoming trends and challenges for data mining and its role within OR.

Suggested Citation

  • B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:1:d:10.1057_jors.2008.171
    DOI: 10.1057/jors.2008.171
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.171
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2008.171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. S. Bradley & Usama M. Fayyad & O. L. Mangasarian, 1999. "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 217-238, August.
    2. Eva-Maria Fronk & Paolo Giudici, 2004. "Markov Chain Monte Carlo model selection for DAG models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(3), pages 259-273, December.
    3. David Durand, 1941. "Risk Elements in Consumer Instalment Financing," NBER Books, National Bureau of Economic Research, Inc, number dura41-1.
    4. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    5. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    6. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    7. Seow, Hsin-Vonn & Thomas, Lyn C., 2007. "To ask or not to ask, that is the question," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1513-1520, December.
    8. O. L. Mangasarian, 1965. "Linear and Nonlinear Separation of Patterns by Linear Programming," Operations Research, INFORMS, vol. 13(3), pages 444-452, June.
    9. Olvi L. Mangasarian & W. Nick Street & William H. Wolberg, 1995. "Breast Cancer Diagnosis and Prognosis Via Linear Programming," Operations Research, INFORMS, vol. 43(4), pages 570-577, August.
    10. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunjung Nam & Won Gyun No & Youngsu Lee, 2017. "Are Commercial Financial Databases Reliable? New Evidence from Korea," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    2. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    3. Al Quhtani Masoud, 2017. "Data Mining Usage in Corporate Information Security: Intrusion Detection Applications," Business Systems Research, Sciendo, vol. 8(1), pages 51-59, March.
    4. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2019. "Individual-level social influence identification in social media: A learning-simulation coordinated method," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1005-1015.
    5. Dejaeger, Karel & Goethals, Frank & Giangreco, Antonio & Mola, Lapo & Baesens, Bart, 2012. "Gaining insight into student satisfaction using comprehensible data mining techniques," European Journal of Operational Research, Elsevier, vol. 218(2), pages 548-562.
    6. J. D’Haen & D. Van Den Poel & D. Thorleuchter, 2012. "Predicting Customer Profitability During Acquisition: Finding the Optimal Combination of Data Source and Data Mining Technique," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/818, Ghent University, Faculty of Economics and Business Administration.
    7. Saridakis, Charalampos & Katsikeas, Constantine S. & Angelidou, Sofia & Oikonomidou, Maria & Pratikakis, Polyvios, 2023. "Mining Twitter lists to extract brand-related associative information for celebrity endorsement," European Journal of Operational Research, Elsevier, vol. 311(1), pages 316-332.
    8. J. D’Haen & D. Van Den Poel, 2013. "Model-supported business-to-business prospect prediction based on an iterative customer acquisition framework," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/863, Ghent University, Faculty of Economics and Business Administration.
    9. Daniel Gartner & Yiye Zhang & Rema Padman, 2018. "Cognitive workload reduction in hospital information systems," Health Care Management Science, Springer, vol. 21(2), pages 224-243, June.
    10. Martin-Barragan, Belen & Lillo, Rosa & Romo, Juan, 2014. "Interpretable support vector machines for functional data," European Journal of Operational Research, Elsevier, vol. 232(1), pages 146-155.
    11. Daniel Antony Kolkman & Paolo Campo & Tina Balke-Visser & Nigel Gilbert, 2016. "How to build models for government: criteria driving model acceptance in policymaking," Policy Sciences, Springer;Society of Policy Sciences, vol. 49(4), pages 489-504, December.
    12. Vlačić, Božidar & Corbo, Leonardo & Costa e Silva, Susana & Dabić, Marina, 2021. "The evolving role of artificial intelligence in marketing: A review and research agenda," Journal of Business Research, Elsevier, vol. 128(C), pages 187-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    2. Berkin, Anil & Aerts, Walter & Van Caneghem, Tom, 2023. "Feasibility analysis of machine learning for performance-related attributional statements," International Journal of Accounting Information Systems, Elsevier, vol. 48(C).
    3. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    4. Emilio Carrizosa & Belen Martin-Barragan & Dolores Romero Morales, 2010. "Binarized Support Vector Machines," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 154-167, February.
    5. Dejaeger, Karel & Goethals, Frank & Giangreco, Antonio & Mola, Lapo & Baesens, Bart, 2012. "Gaining insight into student satisfaction using comprehensible data mining techniques," European Journal of Operational Research, Elsevier, vol. 218(2), pages 548-562.
    6. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    7. TOBBACK, Ellen & MARTENS, David, 2017. "Retail credit scoring using fine-grained payment data," Working Papers 2017011, University of Antwerp, Faculty of Business and Economics.
    8. Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
    9. Lean Yu & Xinxie Li & Ling Tang & Zongyi Zhang & Gang Kou, 2015. "Social credit: a comprehensive literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-18, December.
    10. Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
    11. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    12. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    13. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    14. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    15. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    16. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    17. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    18. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    19. W. Art Chaovalitwongse & Ya-Ju Fan & Rajesh C. Sachdeo, 2008. "Novel Optimization Models for Abnormal Brain Activity Classification," Operations Research, INFORMS, vol. 56(6), pages 1450-1460, December.
    20. E Lima & C Mues & B Baesens, 2009. "Domain knowledge integration in data mining using decision tables: case studies in churn prediction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1096-1106, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:1:d:10.1057_jors.2008.171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.