IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v4y2022i4p50-935d975842.html

Predicting Credit Scores with Boosted Decision Trees

Author

Listed:
  • João A. Bastos

    (Lisbon School of Economics and Management (ISEG) and CEMAPRE/REM, Universidade de Lisboa, 1200-781 Lisboa, Portugal)

Abstract

Credit scoring models help lenders decide whether to grant or reject credit to applicants. This paper proposes a credit scoring model based on boosted decision trees, a powerful learning technique that aggregates several decision trees to form a classifier given by a weighted majority vote of classifications predicted by individual decision trees. The performance of boosted decision trees is evaluated using two publicly available credit card application datasets. The prediction accuracy of boosted decision trees is benchmarked against two alternative machine learning techniques: the multilayer perceptron and support vector machines. The results show that boosted decision trees are a competitive technique for implementing credit scoring models.

Suggested Citation

  • João A. Bastos, 2022. "Predicting Credit Scores with Boosted Decision Trees," Forecasting, MDPI, vol. 4(4), pages 1-11, November.
  • Handle: RePEc:gam:jforec:v:4:y:2022:i:4:p:50-935:d:975842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/4/4/50/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/4/4/50/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reichert, Alan K & Cho, Chien-Ching & Wagner, George M, 1983. "An Examination of the Conceptual Issues Involved in Developing Credit-scoring Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 101-114, April.
    2. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    3. João Bastos, 2014. "Ensemble Predictions of Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 46(2), pages 177-193, October.
    4. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    5. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    6. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme Armando de Almeida Pereira & Kiara de Deus Demura, 2025. "Can Simple Balancing Algorithms Improve School Dropout Forecasting? The Case of the State Education Network of Espírito Santo, Brazil," Forecasting, MDPI, vol. 7(4), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastos, Joao, 2007. "Credit scoring with boosted decision trees," MPRA Paper 8034, University Library of Munich, Germany.
    2. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    3. Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
    4. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    5. Lu Gao & Kanshukan Rajaratnam & Peter Beling, 2016. "Loan origination decisions using a multinomial scorecard," Annals of Operations Research, Springer, vol. 243(1), pages 199-210, August.
    6. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    7. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    8. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    9. Fang, Fang & Chen, Yuanyuan, 2019. "A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 180-194.
    10. Shen, Feng & Zhang, Xin & Wang, Run & Lan, Dao & Zhou, Wei, 2022. "Sequential optimization three-way decision model with information gain for credit default risk evaluation," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1116-1128.
    11. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    12. Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
    13. Wolfgang K. Härdle & Rouslan A. Moro & Dorothea Schäfer, 2004. "Rating Companies with Support Vector Machines," Discussion Papers of DIW Berlin 416, DIW Berlin, German Institute for Economic Research.
    14. Pérez-Martín, A. & Pérez-Torregrosa, A. & Vaca, M., 2018. "Big Data techniques to measure credit banking risk in home equity loans," Journal of Business Research, Elsevier, vol. 89(C), pages 448-454.
    15. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    16. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    17. Anna Stelzer, 2019. "Predicting credit default probabilities using machine learning techniques in the face of unequal class distributions," Papers 1907.12996, arXiv.org.
    18. Xia, Yufei & Han, Zhiyin & Li, Yawen & He, Lingyun, 2025. "Credit scoring model for fintech lending: An integration of large language models and FocalPoly loss," International Journal of Forecasting, Elsevier, vol. 41(3), pages 894-919.
    19. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    20. TOBBACK, Ellen & MARTENS, David, 2017. "Retail credit scoring using fine-grained payment data," Working Papers 2017011, University of Antwerp, Faculty of Business and Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:4:y:2022:i:4:p:50-935:d:975842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.